
websockets Documentation
Release 9.0

Aymeric Augustin

Oct 25, 2022

CONTENTS

1 Tutorials 3
1.1 Getting started . 3
1.2 FAQ . 12

2 How-to guides 19
2.1 Cheat sheet . 19
2.2 Deployment . 20
2.3 Extensions . 23
2.4 Deploying to Heroku . 25

3 Reference 29
3.1 API . 29

4 Discussions 51
4.1 Design . 51
4.2 Limitations . 58
4.3 Security . 58

5 Project 61
5.1 Changelog . 61
5.2 Contributing . 71
5.3 License . 72
5.4 websockets for enterprise . 73

Python Module Index 75

Index 77

i

ii

websockets Documentation, Release 9.0

websockets is a library for building WebSocket servers and clients in Python with a focus on correctness and sim-
plicity.

Built on top of asyncio, Python’s standard asynchronous I/O framework, it provides an elegant coroutine-based API.

Here’s how a client sends and receives messages:

#!/usr/bin/env python

import asyncio
import websockets

async def hello():
uri = "ws://localhost:8765"
async with websockets.connect(uri) as websocket:

await websocket.send("Hello world!")
await websocket.recv()

asyncio.get_event_loop().run_until_complete(hello())

And here’s an echo server:

#!/usr/bin/env python

import asyncio
import websockets

async def echo(websocket, path):
async for message in websocket:

await websocket.send(message)

start_server = websockets.serve(echo, "localhost", 8765)

asyncio.get_event_loop().run_until_complete(start_server)
asyncio.get_event_loop().run_forever()

Do you like it? Let’s dive in!

CONTENTS 1

https://pypi.python.org/pypi/websockets
https://pypi.python.org/pypi/websockets
https://pypi.python.org/pypi/websockets
https://pypi.python.org/pypi/websockets
https://github.com/aaugustin/websockets/actions?workflow=tests
https://github.com/aaugustin/websockets/blob/master/example/server.py
https://github.com/aaugustin/websockets/blob/master/example/client.py
https://docs.python.org/3/library/asyncio.html#module-asyncio

websockets Documentation, Release 9.0

2 CONTENTS

CHAPTER

ONE

TUTORIALS

If you’re new to websockets, this is the place to start.

1.1 Getting started

1.1.1 Requirements

websockets requires Python 3.6.1.

You should use the latest version of Python if possible. If you’re using an older version, be aware that for each minor
version (3.x), only the latest bugfix release (3.x.y) is officially supported.

1.1.2 Installation

Install websockets with:

pip install websockets

1.1.3 Basic example

Here’s a WebSocket server example.

It reads a name from the client, sends a greeting, and closes the connection.

#!/usr/bin/env python

WS server example

import asyncio
import websockets

async def hello(websocket, path):
name = await websocket.recv()
print(f"< {name}")

greeting = f"Hello {name}!"

await websocket.send(greeting)
(continues on next page)

3

websockets Documentation, Release 9.0

(continued from previous page)

print(f"> {greeting}")

start_server = websockets.serve(hello, "localhost", 8765)

asyncio.get_event_loop().run_until_complete(start_server)
asyncio.get_event_loop().run_forever()

On the server side, websockets executes the handler coroutine hello once for each WebSocket connection. It closes
the connection when the handler coroutine returns.

Here’s a corresponding WebSocket client example.

#!/usr/bin/env python

WS client example

import asyncio
import websockets

async def hello():
uri = "ws://localhost:8765"
async with websockets.connect(uri) as websocket:

name = input("What's your name? ")

await websocket.send(name)
print(f"> {name}")

greeting = await websocket.recv()
print(f"< {greeting}")

asyncio.get_event_loop().run_until_complete(hello())

Using connect() as an asynchronous context manager ensures the connection is closed before exiting the hello
coroutine.

1.1.4 Secure example

Secure WebSocket connections improve confidentiality and also reliability because they reduce the risk of interference
by bad proxies.

The WSS protocol is to WS what HTTPS is to HTTP: the connection is encrypted with Transport Layer Security (TLS)
— which is often referred to as Secure Sockets Layer (SSL). WSS requires TLS certificates like HTTPS.

Here’s how to adapt the server example to provide secure connections. See the documentation of the ssl module for
configuring the context securely.

#!/usr/bin/env python

WSS (WS over TLS) server example, with a self-signed certificate

import asyncio
import pathlib
import ssl

(continues on next page)

4 Chapter 1. Tutorials

https://docs.python.org/3/library/ssl.html#module-ssl

websockets Documentation, Release 9.0

(continued from previous page)

import websockets

async def hello(websocket, path):
name = await websocket.recv()
print(f"< {name}")

greeting = f"Hello {name}!"

await websocket.send(greeting)
print(f"> {greeting}")

ssl_context = ssl.SSLContext(ssl.PROTOCOL_TLS_SERVER)
localhost_pem = pathlib.Path(__file__).with_name("localhost.pem")
ssl_context.load_cert_chain(localhost_pem)

start_server = websockets.serve(
hello, "localhost", 8765, ssl=ssl_context

)

asyncio.get_event_loop().run_until_complete(start_server)
asyncio.get_event_loop().run_forever()

Here’s how to adapt the client.

#!/usr/bin/env python

WSS (WS over TLS) client example, with a self-signed certificate

import asyncio
import pathlib
import ssl
import websockets

ssl_context = ssl.SSLContext(ssl.PROTOCOL_TLS_CLIENT)
localhost_pem = pathlib.Path(__file__).with_name("localhost.pem")
ssl_context.load_verify_locations(localhost_pem)

async def hello():
uri = "wss://localhost:8765"
async with websockets.connect(

uri, ssl=ssl_context
) as websocket:

name = input("What's your name? ")

await websocket.send(name)
print(f"> {name}")

greeting = await websocket.recv()
print(f"< {greeting}")

asyncio.get_event_loop().run_until_complete(hello())

This client needs a context because the server uses a self-signed certificate.

1.1. Getting started 5

websockets Documentation, Release 9.0

A client connecting to a secure WebSocket server with a valid certificate (i.e. signed by a CA that your Python instal-
lation trusts) can simply pass ssl=True to connect() instead of building a context.

1.1.5 Browser-based example

Here’s an example of how to run a WebSocket server and connect from a browser.

Run this script in a console:

#!/usr/bin/env python

WS server that sends messages at random intervals

import asyncio
import datetime
import random
import websockets

async def time(websocket, path):
while True:

now = datetime.datetime.utcnow().isoformat() + "Z"
await websocket.send(now)
await asyncio.sleep(random.random() * 3)

start_server = websockets.serve(time, "127.0.0.1", 5678)

asyncio.get_event_loop().run_until_complete(start_server)
asyncio.get_event_loop().run_forever()

Then open this HTML file in a browser.

<!DOCTYPE html>
<html>

<head>
<title>WebSocket demo</title>

</head>
<body>

<script>
var ws = new WebSocket("ws://127.0.0.1:5678/"),

messages = document.createElement('ul');
ws.onmessage = function (event) {

var messages = document.getElementsByTagName('ul')[0],
message = document.createElement('li'),
content = document.createTextNode(event.data);

message.appendChild(content);
messages.appendChild(message);

};
document.body.appendChild(messages);

</script>
</body>

</html>

6 Chapter 1. Tutorials

websockets Documentation, Release 9.0

1.1.6 Synchronization example

A WebSocket server can receive events from clients, process them to update the application state, and synchronize the
resulting state across clients.

Here’s an example where any client can increment or decrement a counter. Updates are propagated to all connected
clients.

The concurrency model of asyncio guarantees that updates are serialized.

Run this script in a console:

#!/usr/bin/env python

WS server example that synchronizes state across clients

import asyncio
import json
import logging
import websockets

logging.basicConfig()

STATE = {"value": 0}

USERS = set()

def state_event():
return json.dumps({"type": "state", **STATE})

def users_event():
return json.dumps({"type": "users", "count": len(USERS)})

async def notify_state():
if USERS: # asyncio.wait doesn't accept an empty list

message = state_event()
await asyncio.wait([user.send(message) for user in USERS])

async def notify_users():
if USERS: # asyncio.wait doesn't accept an empty list

message = users_event()
await asyncio.wait([user.send(message) for user in USERS])

async def register(websocket):
USERS.add(websocket)
await notify_users()

async def unregister(websocket):
USERS.remove(websocket)

(continues on next page)

1.1. Getting started 7

https://docs.python.org/3/library/asyncio.html#module-asyncio

websockets Documentation, Release 9.0

(continued from previous page)

await notify_users()

async def counter(websocket, path):
register(websocket) sends user_event() to websocket
await register(websocket)
try:

await websocket.send(state_event())
async for message in websocket:

data = json.loads(message)
if data["action"] == "minus":

STATE["value"] -= 1
await notify_state()

elif data["action"] == "plus":
STATE["value"] += 1
await notify_state()

else:
logging.error("unsupported event: %s", data)

finally:
await unregister(websocket)

start_server = websockets.serve(counter, "localhost", 6789)

asyncio.get_event_loop().run_until_complete(start_server)
asyncio.get_event_loop().run_forever()

Then open this HTML file in several browsers.

<!DOCTYPE html>
<html>

<head>
<title>WebSocket demo</title>
<style type="text/css">

body {
font-family: "Courier New", sans-serif;
text-align: center;

}
.buttons {

font-size: 4em;
display: flex;
justify-content: center;

}
.button, .value {

line-height: 1;
padding: 2rem;
margin: 2rem;
border: medium solid;
min-height: 1em;
min-width: 1em;

}
.button {

(continues on next page)

8 Chapter 1. Tutorials

websockets Documentation, Release 9.0

(continued from previous page)

cursor: pointer;
user-select: none;

}
.minus {

color: red;
}
.plus {

color: green;
}
.value {

min-width: 2em;
}
.state {

font-size: 2em;
}

</style>
</head>
<body>

<div class="buttons">
<div class="minus button">-</div>
<div class="value">?</div>
<div class="plus button">+</div>

</div>
<div class="state">

? online
</div>
<script>

var minus = document.querySelector('.minus'),
plus = document.querySelector('.plus'),
value = document.querySelector('.value'),
users = document.querySelector('.users'),
websocket = new WebSocket("ws://127.0.0.1:6789/");

minus.onclick = function (event) {
websocket.send(JSON.stringify({action: 'minus'}));

}
plus.onclick = function (event) {

websocket.send(JSON.stringify({action: 'plus'}));
}
websocket.onmessage = function (event) {

data = JSON.parse(event.data);
switch (data.type) {

case 'state':
value.textContent = data.value;
break;

case 'users':
users.textContent = (

data.count.toString() + " user" +
(data.count == 1 ? "" : "s"));

break;
default:

console.error(
"unsupported event", data);

(continues on next page)

1.1. Getting started 9

websockets Documentation, Release 9.0

(continued from previous page)

}
};

</script>
</body>

</html>

1.1.7 Common patterns

You will usually want to process several messages during the lifetime of a connection. Therefore you must write a loop.
Here are the basic patterns for building a WebSocket server.

Consumer

For receiving messages and passing them to a consumer coroutine:

async def consumer_handler(websocket, path):
async for message in websocket:

await consumer(message)

In this example, consumer represents your business logic for processing messages received on the WebSocket connec-
tion.

Iteration terminates when the client disconnects.

Producer

For getting messages from a producer coroutine and sending them:

async def producer_handler(websocket, path):
while True:

message = await producer()
await websocket.send(message)

In this example, producer represents your business logic for generating messages to send on the WebSocket connec-
tion.

send() raises a ConnectionClosed exception when the client disconnects, which breaks out of the while True
loop.

Both

You can read and write messages on the same connection by combining the two patterns shown above and running the
two tasks in parallel:

async def handler(websocket, path):
consumer_task = asyncio.ensure_future(

consumer_handler(websocket, path))
producer_task = asyncio.ensure_future(

producer_handler(websocket, path))
done, pending = await asyncio.wait(

(continues on next page)

10 Chapter 1. Tutorials

websockets Documentation, Release 9.0

(continued from previous page)

[consumer_task, producer_task],
return_when=asyncio.FIRST_COMPLETED,

)
for task in pending:

task.cancel()

Registration

As shown in the synchronization example above, if you need to maintain a list of currently connected clients, you must
register them when they connect and unregister them when they disconnect.

connected = set()

async def handler(websocket, path):
Register.
connected.add(websocket)
try:

Broadcast a message to all connected clients.
await asyncio.wait([ws.send("Hello!") for ws in connected])
await asyncio.sleep(10)

finally:
Unregister.
connected.remove(websocket)

This simplistic example keeps track of connected clients in memory. This only works as long as you run a single
process. In a practical application, the handler may subscribe to some channels on a message broker, for example.

1.1.8 That’s all!

The design of the websockets API was driven by simplicity.

You don’t have to worry about performing the opening or the closing handshake, answering pings, or any other behavior
required by the specification.

websockets handles all this under the hood so you don’t have to.

1.1.9 One more thing. . .

websockets provides an interactive client:

$ python -m websockets wss://echo.websocket.org/

1.1. Getting started 11

websockets Documentation, Release 9.0

1.2 FAQ

Note: Many questions asked in websockets’ issue tracker are actually about asyncio. Python’s documentation
about developing with asyncio is a good complement.

1.2.1 Server side

Why does the server close the connection after processing one message?

Your connection handler exits after processing one message. Write a loop to process multiple messages.

For example, if your handler looks like this:

async def handler(websocket, path):
print(websocket.recv())

change it like this:

async def handler(websocket, path):
async for message in websocket:

print(message)

Don’t feel bad if this happens to you — it’s the most common question in websockets’ issue tracker :-)

Why can only one client connect at a time?

Your connection handler blocks the event loop. Look for blocking calls. Any call that may take some time must be
asynchronous.

For example, if you have:

async def handler(websocket, path):
time.sleep(1)

change it to:

async def handler(websocket, path):
await asyncio.sleep(1)

This is part of learning asyncio. It isn’t specific to websockets.

See also Python’s documentation about running blocking code.

12 Chapter 1. Tutorials

https://docs.python.org/3/library/asyncio.html#module-asyncio
https://docs.python.org/3/library/asyncio-dev.html
https://docs.python.org/3/library/asyncio-dev.html#running-blocking-code

websockets Documentation, Release 9.0

How can I pass additional arguments to the connection handler?

You can bind additional arguments to the connection handler with functools.partial():

import asyncio
import functools
import websockets

async def handler(websocket, path, extra_argument):
...

bound_handler = functools.partial(handler, extra_argument='spam')
start_server = websockets.serve(bound_handler, ...)

Another way to achieve this result is to define the handler coroutine in a scope where the extra_argument variable
exists instead of injecting it through an argument.

How do I get access HTTP headers, for example cookies?

To access HTTP headers during the WebSocket handshake, you can override process_request:

async def process_request(self, path, request_headers):
cookies = request_header["Cookie"]

Once the connection is established, they’re available in request_headers:

async def handler(websocket, path):
cookies = websocket.request_headers["Cookie"]

How do I get the IP address of the client connecting to my server?

It’s available in remote_address:

async def handler(websocket, path):
remote_ip = websocket.remote_address[0]

How do I set which IP addresses my server listens to?

Look at the host argument of create_server().

serve() accepts the same arguments as create_server().

1.2. FAQ 13

https://docs.python.org/3/library/functools.html#functools.partial
https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.loop.create_server
https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.loop.create_server

websockets Documentation, Release 9.0

How do I close a connection properly?

websockets takes care of closing the connection when the handler exits.

How do I run a HTTP server and WebSocket server on the same port?

This isn’t supported.

Providing a HTTP server is out of scope for websockets. It only aims at providing a WebSocket server.

There’s limited support for returning HTTP responses with the process_request hook. If you need more, pick a
HTTP server and run it separately.

1.2.2 Client side

How do I close a connection properly?

The easiest is to use connect() as a context manager:

async with connect(...) as websocket:
...

How do I reconnect automatically when the connection drops?

See issue 414.

How do I stop a client that is continuously processing messages?

You can close the connection.

Here’s an example that terminates cleanly when it receives SIGTERM on Unix:

#!/usr/bin/env python

import asyncio
import signal
import websockets

async def client():
uri = "ws://localhost:8765"
async with websockets.connect(uri) as websocket:

Close the connection when receiving SIGTERM.
loop = asyncio.get_event_loop()
loop.add_signal_handler(

signal.SIGTERM, loop.create_task, websocket.close())

Process messages received on the connection.
async for message in websocket:

...

asyncio.get_event_loop().run_until_complete(client())

14 Chapter 1. Tutorials

https://github.com/aaugustin/websockets/issues/414

websockets Documentation, Release 9.0

How do I disable TLS/SSL certificate verification?

Look at the ssl argument of create_connection().

connect() accepts the same arguments as create_connection().

1.2.3 Both sides

How do I do two things in parallel? How do I integrate with another coroutine?

You must start two tasks, which the event loop will run concurrently. You can achieve this with asyncio.gather()
or asyncio.wait().

This is also part of learning asyncio and not specific to websockets.

Keep track of the tasks and make sure they terminate or you cancel them when the connection terminates.

How do I create channels or topics?

websockets doesn’t have built-in publish / subscribe for these use cases.

Depending on the scale of your service, a simple in-memory implementation may do the job or you may need an
external publish / subscribe component.

What does ConnectionClosedError: code = 1006 mean?

If you’re seeing this traceback in the logs of a server:

Error in connection handler
Traceback (most recent call last):
...

asyncio.streams.IncompleteReadError: 0 bytes read on a total of 2 expected bytes

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
...

websockets.exceptions.ConnectionClosedError: code = 1006 (connection closed abnormally␣
→˓[internal]), no reason

or if a client crashes with this traceback:

Traceback (most recent call last):
...

ConnectionResetError: [Errno 54] Connection reset by peer

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
...

websockets.exceptions.ConnectionClosedError: code = 1006 (connection closed abnormally␣
→˓[internal]), no reason

1.2. FAQ 15

https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.loop.create_connection
https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.loop.create_connection
https://docs.python.org/3/library/asyncio-task.html#asyncio.gather
https://docs.python.org/3/library/asyncio-task.html#asyncio.wait

websockets Documentation, Release 9.0

it means that the TCP connection was lost. As a consequence, the WebSocket connection was closed without receiving
a close frame, which is abnormal.

You can catch and handle ConnectionClosed to prevent it from being logged.

There are several reasons why long-lived connections may be lost:

• End-user devices tend to lose network connectivity often and unpredictably because they can move out of wireless
network coverage, get unplugged from a wired network, enter airplane mode, be put to sleep, etc.

• HTTP load balancers or proxies that aren’t configured for long-lived connections may terminate connections after
a short amount of time, usually 30 seconds.

If you’re facing a reproducible issue, enable debug logs to see when and how connections are closed.

How can I pass additional arguments to a custom protocol subclass?

You can bind additional arguments to the protocol factory with functools.partial():

import asyncio
import functools
import websockets

class MyServerProtocol(websockets.WebSocketServerProtocol):
def __init__(self, extra_argument, *args, **kwargs):

super().__init__(*args, **kwargs)
do something with extra_argument

create_protocol = functools.partial(MyServerProtocol, extra_argument='spam')
start_server = websockets.serve(..., create_protocol=create_protocol)

This example was for a server. The same pattern applies on a client.

Why do I get the error: module 'websockets' has no attribute '...'?

Often, this is because you created a script called websockets.py in your current working directory. Then import
websockets imports this module instead of the websockets library.

Are there onopen, onmessage, onerror, and onclose callbacks?

No, there aren’t.

websockets provides high-level, coroutine-based APIs. Compared to callbacks, coroutines make it easier to manage
control flow in concurrent code.

If you prefer callback-based APIs, you should use another library.

16 Chapter 1. Tutorials

https://docs.python.org/3/library/functools.html#functools.partial

websockets Documentation, Release 9.0

Can I use websockets synchronously, without async / await?

You can convert every asynchronous call to a synchronous call by wrapping it in asyncio.get_event_loop().
run_until_complete(...).

If this turns out to be impractical, you should use another library.

1.2.4 Miscellaneous

How do I set a timeout on recv()?

Use wait_for():

await asyncio.wait_for(websocket.recv(), timeout=10)

This technique works for most APIs, except for asynchronous context managers. See issue 574.

How do I keep idle connections open?

websockets sends pings at 20 seconds intervals to keep the connection open.

In closes the connection if it doesn’t get a pong within 20 seconds.

You can adjust this behavior with ping_interval and ping_timeout.

How do I respond to pings?

websockets takes care of responding to pings with pongs.

Is there a Python 2 version?

No, there isn’t.

websockets builds upon asyncio which requires Python 3.

1.2. FAQ 17

https://docs.python.org/3/library/asyncio-task.html#asyncio.wait_for
https://github.com/aaugustin/websockets/issues/574

websockets Documentation, Release 9.0

18 Chapter 1. Tutorials

CHAPTER

TWO

HOW-TO GUIDES

These guides will help you build and deploy a websockets application.

2.1 Cheat sheet

2.1.1 Server

• Write a coroutine that handles a single connection. It receives a WebSocket protocol instance and the URI path
in argument.

– Call recv() and send() to receive and send messages at any time.

– When recv() or send() raises ConnectionClosed , clean up and exit. If you started other asyncio.
Task, terminate them before exiting.

– If you aren’t awaiting recv(), consider awaiting wait_closed() to detect quickly when the connection
is closed.

– You may ping() or pong() if you wish but it isn’t needed in general.

• Create a server with serve() which is similar to asyncio’s create_server(). You can also use it as an asyn-
chronous context manager.

– The server takes care of establishing connections, then lets the handler execute the application logic, and
finally closes the connection after the handler exits normally or with an exception.

– For advanced customization, you may subclass WebSocketServerProtocol and pass either this subclass
or a factory function as the create_protocol argument.

2.1.2 Client

• Create a client with connect() which is similar to asyncio’s create_connection(). You can also use it as
an asynchronous context manager.

– For advanced customization, you may subclass WebSocketClientProtocol and pass either this subclass
or a factory function as the create_protocol argument.

• Call recv() and send() to receive and send messages at any time.

• You may ping() or pong() if you wish but it isn’t needed in general.

• If you aren’t using connect() as a context manager, call close() to terminate the connection.

19

https://docs.python.org/3/library/asyncio-task.html#asyncio.Task
https://docs.python.org/3/library/asyncio-task.html#asyncio.Task

websockets Documentation, Release 9.0

2.1.3 Debugging

If you don’t understand what websockets is doing, enable logging:

import logging
logger = logging.getLogger('websockets')
logger.setLevel(logging.INFO)
logger.addHandler(logging.StreamHandler())

The logs contain:

• Exceptions in the connection handler at the ERROR level

• Exceptions in the opening or closing handshake at the INFO level

• All frames at the DEBUG level — this can be very verbose

If you’re new to asyncio, you will certainly encounter issues that are related to asynchronous programming in general
rather than to websockets in particular. Fortunately Python’s official documentation provides advice to develop with
asyncio. Check it out: it’s invaluable!

2.2 Deployment

2.2.1 Application server

The author of websockets isn’t aware of best practices for deploying network services based on asyncio, let alone
application servers.

You can run a script similar to the server example, inside a supervisor if you deem that useful.

You can also add a wrapper to daemonize the process. Third-party libraries provide solutions for that.

If you can share knowledge on this topic, please file an issue. Thanks!

2.2.2 Graceful shutdown

You may want to close connections gracefully when shutting down the server, perhaps after executing some cleanup
logic. There are two ways to achieve this with the object returned by serve():

• using it as a asynchronous context manager, or

• calling its close() method, then waiting for its wait_closed() method to complete.

On Unix systems, shutdown is usually triggered by sending a signal.

Here’s a full example for handling SIGTERM on Unix:

#!/usr/bin/env python

import asyncio
import signal
import websockets

async def echo(websocket, path):
async for message in websocket:

await websocket.send(message)
(continues on next page)

20 Chapter 2. How-to guides

https://docs.python.org/3/library/asyncio-dev.html
https://docs.python.org/3/library/asyncio-dev.html
https://docs.python.org/3/library/asyncio.html#module-asyncio
https://github.com/aaugustin/websockets/issues/new

websockets Documentation, Release 9.0

(continued from previous page)

async def echo_server(stop):
async with websockets.serve(echo, "localhost", 8765):

await stop

loop = asyncio.get_event_loop()

The stop condition is set when receiving SIGTERM.
stop = loop.create_future()
loop.add_signal_handler(signal.SIGTERM, stop.set_result, None)

Run the server until the stop condition is met.
loop.run_until_complete(echo_server(stop))

This example is easily adapted to handle other signals. If you override the default handler for SIGINT, which raises
KeyboardInterrupt, be aware that you won’t be able to interrupt a program with Ctrl-C anymore when it’s stuck in
a loop.

It’s more difficult to achieve the same effect on Windows. Some third-party projects try to help with this problem.

If your server doesn’t run in the main thread, look at call_soon_threadsafe().

2.2.3 Memory usage

In most cases, memory usage of a WebSocket server is proportional to the number of open connections. When a server
handles thousands of connections, memory usage can become a bottleneck.

Memory usage of a single connection is the sum of:

1. the baseline amount of memory websockets requires for each connection,

2. the amount of data held in buffers before the application processes it,

3. any additional memory allocated by the application itself.

Baseline

Compression settings are the main factor affecting the baseline amount of memory used by each connection.

By default websockets maximizes compression rate at the expense of memory usage. If memory usage is an issue,
lowering compression settings can help:

• Context Takeover is necessary to get good performance for almost all applications. It should remain enabled.

• Window Bits is a trade-off between memory usage and compression rate. It defaults to 15 and can be lowered.
The default value isn’t optimal for small, repetitive messages which are typical of WebSocket servers.

• Memory Level is a trade-off between memory usage and compression speed. It defaults to 8 and can be lowered.
A lower memory level can actually increase speed thanks to memory locality, even if the CPU does more work!

See this example for how to configure compression settings.

Here’s how various compression settings affect memory usage of a single connection on a 64-bit system, as well a
benchmark of compressed size and compression time for a corpus of small JSON documents.

2.2. Deployment 21

https://docs.python.org/3/library/exceptions.html#KeyboardInterrupt
https://gist.github.com/aaugustin/fbea09ce8b5b30c4e56458eb081fe599

websockets Documentation, Release 9.0

Compression Window Bits Memory Level Memory usage Size vs. default Time vs. default
default 15 8 325 KiB +0% +0%

14 7 181 KiB +1.5% -5.3%
13 6 110 KiB +2.8% -7.5%
12 5 73 KiB +4.4% -18.9%
11 4 55 KiB +8.5% -18.8%

disabled N/A N/A 22 KiB N/A N/A

Don’t assume this example is representative! Compressed size and compression time depend heavily on the kind of
messages exchanged by the application!

You can run the same benchmark for your application by creating a list of typical messages and passing it to the
_benchmark function.

This blog post by Ilya Grigorik provides more details about how compression settings affect memory usage and how
to optimize them.

This experiment by Peter Thorson suggests Window Bits = 11, Memory Level = 4 as a sweet spot for optimizing
memory usage.

Buffers

Under normal circumstances, buffers are almost always empty.

Under high load, if a server receives more messages than it can process, bufferbloat can result in excessive memory
use.

By default websockets has generous limits. It is strongly recommended to adapt them to your application. When you
call serve():

• Set max_size (default: 1 MiB, UTF-8 encoded) to the maximum size of messages your application generates.

• Set max_queue (default: 32) to the maximum number of messages your application expects to receive faster than
it can process them. The queue provides burst tolerance without slowing down the TCP connection.

Furthermore, you can lower read_limit and write_limit (default: 64 KiB) to reduce the size of buffers for incoming
and outgoing data.

The design document provides more details about buffers.

2.2.4 Port sharing

The WebSocket protocol is an extension of HTTP/1.1. It can be tempting to serve both HTTP and WebSocket on the
same port.

The author of websockets doesn’t think that’s a good idea, due to the widely different operational characteristics of
HTTP and WebSocket.

websockets provide minimal support for responding to HTTP requests with the process_request() hook. Typical
use cases include health checks. Here’s an example:

#!/usr/bin/env python

WS echo server with HTTP endpoint at /health/

(continues on next page)

22 Chapter 2. How-to guides

https://gist.github.com/aaugustin/fbea09ce8b5b30c4e56458eb081fe599#file-compression-py-L48-L144
https://www.igvita.com/2013/11/27/configuring-and-optimizing-websocket-compression/
https://www.ietf.org/mail-archive/web/hybi/current/msg10222.html

websockets Documentation, Release 9.0

(continued from previous page)

import asyncio
import http
import websockets

async def health_check(path, request_headers):
if path == "/health/":

return http.HTTPStatus.OK, [], b"OK\n"

async def echo(websocket, path):
async for message in websocket:

await websocket.send(message)

start_server = websockets.serve(
echo, "localhost", 8765, process_request=health_check

)

asyncio.get_event_loop().run_until_complete(start_server)
asyncio.get_event_loop().run_forever()

2.3 Extensions

The WebSocket protocol supports extensions.

At the time of writing, there’s only one registered extension with a public specification, WebSocket Per-Message De-
flate, specified in RFC 7692.

2.3.1 Per-Message Deflate

connect() and serve() enable the Per-Message Deflate extension by default.

If you want to disable it, set compression=None:

import websockets

websockets.connect(..., compression=None)

websockets.serve(..., compression=None)

You can also configure the Per-Message Deflate extension explicitly if you want to customize compression settings:

import websockets
from websockets.extensions import permessage_deflate

websockets.connect(
...,
extensions=[

permessage_deflate.ClientPerMessageDeflateFactory(
server_max_window_bits=11,
client_max_window_bits=11,
compress_settings={'memLevel': 4},

(continues on next page)

2.3. Extensions 23

https://tools.ietf.org/html/rfc6455#section-9
https://www.iana.org/assignments/websocket/websocket.xhtml#extension-name
https://datatracker.ietf.org/doc/html/rfc7692.html

websockets Documentation, Release 9.0

(continued from previous page)

),
],

)

websockets.serve(
...,
extensions=[

permessage_deflate.ServerPerMessageDeflateFactory(
server_max_window_bits=11,
client_max_window_bits=11,
compress_settings={'memLevel': 4},

),
],

)

The window bits and memory level values chosen in these examples reduce memory usage. You can read more about
optimizing compression settings.

Refer to the API documentation of ClientPerMessageDeflateFactory and ServerPerMessageDeflateFactory
for details.

2.3.2 Writing an extension

During the opening handshake, WebSocket clients and servers negotiate which extensions will be used with which
parameters. Then each frame is processed by extensions before being sent or after being received.

As a consequence, writing an extension requires implementing several classes:

• Extension Factory: it negotiates parameters and instantiates the extension.

Clients and servers require separate extension factories with distinct APIs.

Extension factories are the public API of an extension.

• Extension: it decodes incoming frames and encodes outgoing frames.

If the extension is symmetrical, clients and servers can use the same class.

Extensions are initialized by extension factories, so they don’t need to be part of the public API of an extension.

websockets provides abstract base classes for extension factories and extensions. See the API documentation for
details on their methods:

• ClientExtensionFactory and class:ServerExtensionFactory for :extension factories,

• Extension for extensions.

24 Chapter 2. How-to guides

websockets Documentation, Release 9.0

2.4 Deploying to Heroku

This guide describes how to deploy a websockets server to Heroku. We’re going to deploy a very simple app. The
process would be identical for a more realistic app.

2.4.1 Create application

Deploying to Heroku requires a git repository. Let’s initialize one:

$ mkdir websockets-echo
$ cd websockets-echo
$ git init .
Initialized empty Git repository in websockets-echo/.git/
$ git commit --allow-empty -m "Initial commit."
[master (root-commit) 1e7947d] Initial commit.

Follow the set-up instructions to install the Heroku CLI and to log in, if you haven’t done that yet.

Then, create a Heroku app — if you follow these instructions step-by-step, you’ll have to pick a different name because
I’m already using websockets-echo on Heroku:

$ $ heroku create websockets-echo
Creating websockets-echo... done
https://websockets-echo.herokuapp.com/ | https://git.heroku.com/websockets-echo.git

Here’s the implementation of the app, an echo server. Save it in a file called app.py:

#!/usr/bin/env python

import asyncio
import os

import websockets

async def echo(websocket, path):
async for message in websocket:

await websocket.send(message)

start_server = websockets.serve(echo, "", int(os.environ["PORT"]))

asyncio.get_event_loop().run_until_complete(start_server)
asyncio.get_event_loop().run_forever()

The server relies on the $PORT environment variable to tell on which port it will listen, according to Heroku’s conven-
tions.

2.4. Deploying to Heroku 25

https://www.heroku.com/
https://devcenter.heroku.com/articles/getting-started-with-python#set-up

websockets Documentation, Release 9.0

2.4.2 Configure deployment

In order to build the app, Heroku needs to know that it depends on websockets. Create a requirements.txt file
containing this line:

websockets

Heroku also needs to know how to run the app. Create a Procfile with this content:

web: python app.py

Confirm that you created the correct files and commit them to git:

$ ls
Procfile app.py requirements.txt
$ git add .
$ git commit -m "Deploy echo server to Heroku."
[master 8418c62] Deploy echo server to Heroku.
3 files changed, 19 insertions(+)
create mode 100644 Procfile
create mode 100644 app.py
create mode 100644 requirements.txt

2.4.3 Deploy

Our app is ready. Let’s deploy it!

$ git push heroku master

... lots of output...

remote: -----> Launching...
remote: Released v3
remote: https://websockets-echo.herokuapp.com/ deployed to Heroku
remote:
remote: Verifying deploy... done.
To https://git.heroku.com/websockets-echo.git
* [new branch] master -> master

2.4.4 Validate deployment

Of course we’d like to confirm that our application is running as expected!

Since it’s a WebSocket server, we need a WebSocket client, such as the interactive client that comes with websockets.

If you’re currently building a websockets server, perhaps you’re already in a virtualenv where websockets is installed.
If not, you can install it in a new virtualenv as follows:

$ python -m venv websockets-client
$. websockets-client/bin/activate
$ pip install websockets

Connect the interactive client — using the name of your Heroku app instead of websockets-echo:

26 Chapter 2. How-to guides

websockets Documentation, Release 9.0

$ python -m websockets wss://websockets-echo.herokuapp.com/
Connected to wss://websockets-echo.herokuapp.com/.
>

Great! Our app is running!

In this example, I used a secure connection (wss://). It worked because Heroku served a valid TLS certificate for
websockets-echo.herokuapp.com. An insecure connection (ws://) would also work.

Once you’re connected, you can send any message and the server will echo it, then press Ctrl-D to terminate the
connection:

> Hello!
< Hello!
Connection closed: code = 1000 (OK), no reason.

2.4. Deploying to Heroku 27

websockets Documentation, Release 9.0

28 Chapter 2. How-to guides

CHAPTER

THREE

REFERENCE

Find all the details you could ask for, and then some.

3.1 API

websockets provides complete client and server implementations, as shown in the getting started guide.

The process for opening and closing a WebSocket connection depends on which side you’re implementing.

• On the client side, connecting to a server with connect yields a connection object that provides methods for
interacting with the connection. Your code can open a connection, then send or receive messages.

If you use connect as an asynchronous context manager, then websockets closes the connection on exit. If not,
then your code is responsible for closing the connection.

• On the server side, serve starts listening for client connections and yields an server object that supports closing
the server.

Then, when clients connects, the server initializes a connection object and passes it to a handler coroutine, which
is where your code can send or receive messages. This pattern is called inversion of control. It’s common in
frameworks implementing servers.

When the handler coroutine terminates, websockets closes the connection. You may also close it in the handler
coroutine if you’d like.

Once the connection is open, the WebSocket protocol is symmetrical, except for low-level details that websockets
manages under the hood. The same methods are available on client connections created with connect and on server
connections passed to the connection handler in the arguments.

At this point, websockets provides the same API — and uses the same code — for client and server connections. For
convenience, common methods are documented both in the client API and server API.

3.1.1 Client

Opening a connection

await websockets.client.connect(uri, *, create_protocol=None, ping_interval=20, ping_timeout=20,
close_timeout=None, max_size=1048576, max_queue=32,
read_limit=65536, write_limit=65536, loop=None, compression='deflate',
origin=None, extensions=None, subprotocols=None, extra_headers=None,
**kwargs)

Connect to the WebSocket server at the given uri.

29

https://en.wikipedia.org/wiki/Inversion_of_control

websockets Documentation, Release 9.0

Awaiting connect() yields a WebSocketClientProtocol which can then be used to send and receive mes-
sages.

connect() can also be used as a asynchronous context manager:

async with connect(...) as websocket:
...

In that case, the connection is closed when exiting the context.

connect() is a wrapper around the event loop’s create_connection() method. Unknown keyword argu-
ments are passed to create_connection().

For example, you can set the ssl keyword argument to a SSLContext to enforce some TLS settings. When
connecting to a wss:// URI, if this argument isn’t provided explicitly, ssl.create_default_context() is
called to create a context.

You can connect to a different host and port from those found in uri by setting host and port keyword argu-
ments. This only changes the destination of the TCP connection. The host name from uri is still used in the
TLS handshake for secure connections and in the Host HTTP header.

create_protocol defaults to WebSocketClientProtocol. It may be replaced by a wrapper or a subclass to
customize the protocol that manages the connection.

The behavior of ping_interval, ping_timeout, close_timeout, max_size, max_queue, read_limit,
and write_limit is described in WebSocketClientProtocol.

connect() also accepts the following optional arguments:

• compression is a shortcut to configure compression extensions; by default it enables the “permessage-
deflate” extension; set it to None to disable compression.

• origin sets the Origin HTTP header.

• extensions is a list of supported extensions in order of decreasing preference.

• subprotocols is a list of supported subprotocols in order of decreasing preference.

• extra_headers sets additional HTTP request headers; it can be a Headers instance, a Mapping, or an
iterable of (name, value) pairs.

Raises

• InvalidURI – if uri is invalid

• InvalidHandshake – if the opening handshake fails

await websockets.client.unix_connect(path, uri='ws://localhost/', **kwargs)
Similar to connect(), but for connecting to a Unix socket.

This function calls the event loop’s create_unix_connection() method.

It is only available on Unix.

It’s mainly useful for debugging servers listening on Unix sockets.

Parameters

• path (Optional[str]) – file system path to the Unix socket

• uri (str) – WebSocket URI

Return type
Connect

30 Chapter 3. Reference

https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.loop.create_connection
https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.loop.create_connection
https://docs.python.org/3/library/ssl.html#ssl.SSLContext
https://docs.python.org/3/library/ssl.html#ssl.create_default_context
https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping
https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.loop.create_unix_connection
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

websockets Documentation, Release 9.0

Using a connection

class websockets.client.WebSocketClientProtocol(*, origin=None, extensions=None,
subprotocols=None, extra_headers=None, **kwargs)

Protocol subclass implementing a WebSocket client.

WebSocketClientProtocol:

• performs the opening handshake to establish the connection;

• provides recv() and send() coroutines for receiving and sending messages;

• deals with control frames automatically;

• performs the closing handshake to terminate the connection.

WebSocketClientProtocol supports asynchronous iteration:

async for message in websocket:
await process(message)

The iterator yields incoming messages. It exits normally when the connection is closed with the close code 1000
(OK) or 1001 (going away). It raises a ConnectionClosedError exception when the connection is closed with
any other code.

Once the connection is open, a Ping frame is sent every ping_interval seconds. This serves as a keepalive.
It helps keeping the connection open, especially in the presence of proxies with short timeouts on inactive con-
nections. Set ping_interval to None to disable this behavior.

If the corresponding Pong frame isn’t received within ping_timeout seconds, the connection is considered
unusable and is closed with code 1011. This ensures that the remote endpoint remains responsive. Set
ping_timeout to None to disable this behavior.

The close_timeout parameter defines a maximum wait time for completing the closing handshake and termi-
nating the TCP connection. For legacy reasons, close() completes in at most 5 * close_timeout seconds.

close_timeout needs to be a parameter of the protocol because websockets usually calls close() implicitly
upon exit when connect() is used as a context manager.

To apply a timeout to any other API, wrap it in wait_for().

The max_size parameter enforces the maximum size for incoming messages in bytes. The default value is
1 MiB. None disables the limit. If a message larger than the maximum size is received, recv() will raise
ConnectionClosedError and the connection will be closed with code 1009.

The max_queue parameter sets the maximum length of the queue that holds incoming messages. The default
value is 32. None disables the limit. Messages are added to an in-memory queue when they’re received; then
recv() pops from that queue. In order to prevent excessive memory consumption when messages are received
faster than they can be processed, the queue must be bounded. If the queue fills up, the protocol stops processing
incoming data until recv() is called. In this situation, various receive buffers (at least in asyncio and in the
OS) will fill up, then the TCP receive window will shrink, slowing down transmission to avoid packet loss.

Since Python can use up to 4 bytes of memory to represent a single character, each connection may use up to
4 * max_size * max_queue bytes of memory to store incoming messages. By default, this is 128 MiB. You
may want to lower the limits, depending on your application’s requirements.

The read_limit argument sets the high-water limit of the buffer for incoming bytes. The low-water limit is half
the high-water limit. The default value is 64 KiB, half of asyncio’s default (based on the current implementation
of StreamReader).

3.1. API 31

https://docs.python.org/3/library/asyncio-protocol.html#asyncio.Protocol
https://tools.ietf.org/html/rfc6455#section-5.5.2
https://tools.ietf.org/html/rfc6455#section-5.5.3
https://docs.python.org/3/library/asyncio-task.html#asyncio.wait_for
https://docs.python.org/3/library/asyncio.html#module-asyncio
https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamReader

websockets Documentation, Release 9.0

The write_limit argument sets the high-water limit of the buffer for outgoing bytes. The low-water limit is
a quarter of the high-water limit. The default value is 64 KiB, equal to asyncio’s default (based on the current
implementation of FlowControlMixin).

As soon as the HTTP request and response in the opening handshake are processed:

• the request path is available in the path attribute;

• the request and response HTTP headers are available in the request_headers and response_headers
attributes, which are Headers instances.

If a subprotocol was negotiated, it’s available in the subprotocol attribute.

Once the connection is closed, the code is available in the close_code attribute and the reason in
close_reason.

All attributes must be treated as read-only.

local_address

Local address of the connection as a (host, port) tuple.

When the connection isn’t open, local_address is None.

Return type
Any

remote_address

Remote address of the connection as a (host, port) tuple.

When the connection isn’t open, remote_address is None.

Return type
Any

open

True when the connection is usable.

It may be used to detect disconnections. However, this approach is discouraged per the EAFP principle.

When open is False, using the connection raises a ConnectionClosed exception.

Return type
bool

closed

True once the connection is closed.

Be aware that both open and closed are False during the opening and closing sequences.

Return type
bool

path

Path of the HTTP request.

Available once the connection is open.

request_headers

HTTP request headers as a Headers instance.

Available once the connection is open.

32 Chapter 3. Reference

https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/glossary.html#term-eafp
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

websockets Documentation, Release 9.0

response_headers

HTTP response headers as a Headers instance.

Available once the connection is open.

subprotocol

Subprotocol, if one was negotiated.

Available once the connection is open.

close_code

WebSocket close code.

Available once the connection is closed.

close_reason

WebSocket close reason.

Available once the connection is closed.

await recv()

Receive the next message.

Return a str for a text frame and bytes for a binary frame.

When the end of the message stream is reached, recv() raises ConnectionClosed . Specifically, it raises
ConnectionClosedOK after a normal connection closure and ConnectionClosedError after a protocol
error or a network failure.

Canceling recv() is safe. There’s no risk of losing the next message. The next invocation of recv() will
return it. This makes it possible to enforce a timeout by wrapping recv() in wait_for().

Raises

• ConnectionClosed – when the connection is closed

• RuntimeError – if two coroutines call recv() concurrently

Return type
Union[str, bytes]

await send(message)
Send a message.

A string (str) is sent as a Text frame. A bytestring or bytes-like object (bytes, bytearray, or
memoryview) is sent as a Binary frame.

send() also accepts an iterable or an asynchronous iterable of strings, bytestrings, or bytes-like objects.
In that case the message is fragmented. Each item is treated as a message fragment and sent in its own
frame. All items must be of the same type, or else send() will raise a TypeError and the connection will
be closed.

send() rejects dict-like objects because this is often an error. If you wish to send the keys of a dict-like
object as fragments, call its keys() method and pass the result to send().

Canceling send() is discouraged. Instead, you should close the connection with close(). Indeed, there
are only two situations where send() may yield control to the event loop:

1. The write buffer is full. If you don’t want to wait until enough data is sent, your only alternative is to
close the connection. close() will likely time out then abort the TCP connection.

2. message is an asynchronous iterator that yields control. Stopping in the middle of a fragmented
message will cause a protocol error. Closing the connection has the same effect.

3.1. API 33

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/asyncio-task.html#asyncio.wait_for
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://tools.ietf.org/html/rfc6455#section-5.6
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/stdtypes.html#memoryview
https://tools.ietf.org/html/rfc6455#section-5.6
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#dict.keys

websockets Documentation, Release 9.0

Raises
TypeError – for unsupported inputs

Return type
None

await ping(data=None)
Send a ping.

Return a Future that will be completed when the corresponding pong is received. You can ignore it if you
don’t intend to wait.

A ping may serve as a keepalive or as a check that the remote endpoint received all messages up to this
point:

pong_waiter = await ws.ping()
await pong_waiter # only if you want to wait for the pong

By default, the ping contains four random bytes. This payload may be overridden with the optional data
argument which must be a string (which will be encoded to UTF-8) or a bytes-like object.

Canceling ping() is discouraged. If ping() doesn’t return immediately, it means the write buffer is full.
If you don’t want to wait, you should close the connection.

Canceling the Future returned by ping() has no effect.

Return type
Awaitable[None]

await pong(data=b'')
Send a pong.

An unsolicited pong may serve as a unidirectional heartbeat.

The payload may be set with the optional data argument which must be a string (which will be encoded to
UTF-8) or a bytes-like object.

Canceling pong() is discouraged for the same reason as ping().

Return type
None

await close(code=1000, reason='')
Perform the closing handshake.

close() waits for the other end to complete the handshake and for the TCP connection to terminate. As a
consequence, there’s no need to await wait_closed(); close() already does it.

close() is idempotent: it doesn’t do anything once the connection is closed.

Wrapping close() in create_task() is safe, given that errors during connection termination aren’t par-
ticularly useful.

Canceling close() is discouraged. If it takes too long, you can set a shorter close_timeout. If you don’t
want to wait, let the Python process exit, then the OS will close the TCP connection.

Parameters

• code (int) – WebSocket close code

• reason (str) – WebSocket close reason

34 Chapter 3. Reference

https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/asyncio-future.html#asyncio.Future
https://docs.python.org/3/library/asyncio-future.html#asyncio.Future
https://docs.python.org/3/library/typing.html#typing.Awaitable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/asyncio-task.html#asyncio.create_task
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

websockets Documentation, Release 9.0

Return type
None

await wait_closed()

Wait until the connection is closed.

This is identical to closed , except it can be awaited.

This can make it easier to handle connection termination, regardless of its cause, in tasks that interact with
the WebSocket connection.

Return type
None

3.1.2 Server

Starting a server

await websockets.server.serve(ws_handler, host=None, port=None, *, create_protocol=None,
ping_interval=20, ping_timeout=20, close_timeout=None,
max_size=1048576, max_queue=32, read_limit=65536, write_limit=65536,
loop=None, compression='deflate', origins=None, extensions=None,
subprotocols=None, extra_headers=None, process_request=None,
select_subprotocol=None, **kwargs)

Create, start, and return a WebSocket server on host and port.

Whenever a client connects, the server accepts the connection, creates a WebSocketServerProtocol, performs
the opening handshake, and delegates to the connection handler defined by ws_handler. Once the handler com-
pletes, either normally or with an exception, the server performs the closing handshake and closes the connection.

Awaiting serve() yields a WebSocketServer. This instance provides close() and wait_closed()methods
for terminating the server and cleaning up its resources.

When a server is closed with close(), it closes all connections with close code 1001 (going away). Connections
handlers, which are running the ws_handler coroutine, will receive a ConnectionClosedOK exception on their
current or next interaction with the WebSocket connection.

serve() can also be used as an asynchronous context manager:

stop = asyncio.Future() # set this future to exit the server

async with serve(...):
await stop

In this case, the server is shut down when exiting the context.

serve() is a wrapper around the event loop’s create_server() method. It creates and starts a asyncio.
Server with create_server(). Then it wraps the asyncio.Server in a WebSocketServer and returns the
WebSocketServer.

ws_handler is the WebSocket handler. It must be a coroutine accepting two arguments: the WebSocket con-
nection, which is an instance of WebSocketServerProtocol, and the path of the request.

The host and port arguments, as well as unrecognized keyword arguments, are passed to create_server().

For example, you can set the ssl keyword argument to a SSLContext to enable TLS.

create_protocol defaults to WebSocketServerProtocol. It may be replaced by a wrapper or a subclass to
customize the protocol that manages the connection.

3.1. API 35

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.loop.create_server
https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.Server
https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.Server
https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.loop.create_server
https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.Server
https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.loop.create_server
https://docs.python.org/3/library/ssl.html#ssl.SSLContext

websockets Documentation, Release 9.0

The behavior of ping_interval, ping_timeout, close_timeout, max_size, max_queue, read_limit,
and write_limit is described in WebSocketServerProtocol.

serve() also accepts the following optional arguments:

• compression is a shortcut to configure compression extensions; by default it enables the “permessage-
deflate” extension; set it to None to disable compression.

• origins defines acceptable Origin HTTP headers; include None in the list if the lack of an origin is ac-
ceptable.

• extensions is a list of supported extensions in order of decreasing preference.

• subprotocols is a list of supported subprotocols in order of decreasing preference.

• extra_headers sets additional HTTP response headers when the handshake succeeds; it can be a Headers
instance, a Mapping, an iterable of (name, value) pairs, or a callable taking the request path and headers
in arguments and returning one of the above.

• process_request allows intercepting the HTTP request; it must be a coroutine taking the request path
and headers in argument; see process_request() for details.

• select_subprotocol allows customizing the logic for selecting a subprotocol; it must be a callable taking
the subprotocols offered by the client and available on the server in argument; see select_subprotocol()
for details.

Since there’s no useful way to propagate exceptions triggered in handlers, they’re sent to the "websockets.
server" logger instead. Debugging is much easier if you configure logging to print them:

import logging
logger = logging.getLogger("websockets.server")
logger.setLevel(logging.ERROR)
logger.addHandler(logging.StreamHandler())

await websockets.server.unix_serve(ws_handler, path=None, **kwargs)
Similar to serve(), but for listening on Unix sockets.

This function calls the event loop’s create_unix_server() method.

It is only available on Unix.

It’s useful for deploying a server behind a reverse proxy such as nginx.

Parameters
path (Optional[str]) – file system path to the Unix socket

Return type
Serve

Stopping a server

class websockets.server.WebSocketServer(loop)
WebSocket server returned by serve().

This class provides the same interface as AbstractServer, namely the close() and wait_closed()methods.

It keeps track of WebSocket connections in order to close them properly when shutting down.

Instances of this class store a reference to the Server object returned by create_server() rather than inherit
from Server in part because create_server() doesn’t support passing a custom Server class.

36 Chapter 3. Reference

https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping
https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.loop.create_unix_server
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.Server
https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.loop.create_server
https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.Server
https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.loop.create_server
https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.Server

websockets Documentation, Release 9.0

sockets

List of socket objects the server is listening to.

None if the server is closed.

Return type
Optional[List[socket]]

close()

Close the server.

This method:

• closes the underlying Server;

• rejects new WebSocket connections with an HTTP 503 (service unavailable) error; this happens when
the server accepted the TCP connection but didn’t complete the WebSocket opening handshake prior
to closing;

• closes open WebSocket connections with close code 1001 (going away).

close() is idempotent.

Return type
None

await wait_closed()

Wait until the server is closed.

When wait_closed() returns, all TCP connections are closed and all connection handlers have returned.

Return type
None

Using a connection

class websockets.server.WebSocketServerProtocol(ws_handler, ws_server, *, origins=None,
extensions=None, subprotocols=None,
extra_headers=None, process_request=None,
select_subprotocol=None, **kwargs)

Protocol subclass implementing a WebSocket server.

WebSocketServerProtocol:

• performs the opening handshake to establish the connection;

• provides recv() and send() coroutines for receiving and sending messages;

• deals with control frames automatically;

• performs the closing handshake to terminate the connection.

You may customize the opening handshake by subclassing WebSocketServer and overriding:

• process_request() to intercept the client request before any processing and, if appropriate, to abort the
WebSocket request and return a HTTP response instead;

• select_subprotocol() to select a subprotocol, if the client and the server have multiple subprotocols in
common and the default logic for choosing one isn’t suitable (this is rarely needed).

WebSocketServerProtocol supports asynchronous iteration:

3.1. API 37

https://docs.python.org/3/library/socket.html#socket.socket
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/socket.html#socket.socket
https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.Server
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/asyncio-protocol.html#asyncio.Protocol

websockets Documentation, Release 9.0

async for message in websocket:
await process(message)

The iterator yields incoming messages. It exits normally when the connection is closed with the close code 1000
(OK) or 1001 (going away). It raises a ConnectionClosedError exception when the connection is closed with
any other code.

Once the connection is open, a Ping frame is sent every ping_interval seconds. This serves as a keepalive.
It helps keeping the connection open, especially in the presence of proxies with short timeouts on inactive con-
nections. Set ping_interval to None to disable this behavior.

If the corresponding Pong frame isn’t received within ping_timeout seconds, the connection is considered
unusable and is closed with code 1011. This ensures that the remote endpoint remains responsive. Set
ping_timeout to None to disable this behavior.

The close_timeout parameter defines a maximum wait time for completing the closing handshake and termi-
nating the TCP connection. For legacy reasons, close() completes in at most 4 * close_timeout seconds.

close_timeout needs to be a parameter of the protocol because websockets usually calls close() implicitly
when the connection handler terminates.

To apply a timeout to any other API, wrap it in wait_for().

The max_size parameter enforces the maximum size for incoming messages in bytes. The default value is
1 MiB. None disables the limit. If a message larger than the maximum size is received, recv() will raise
ConnectionClosedError and the connection will be closed with code 1009.

The max_queue parameter sets the maximum length of the queue that holds incoming messages. The default
value is 32. None disables the limit. Messages are added to an in-memory queue when they’re received; then
recv() pops from that queue. In order to prevent excessive memory consumption when messages are received
faster than they can be processed, the queue must be bounded. If the queue fills up, the protocol stops processing
incoming data until recv() is called. In this situation, various receive buffers (at least in asyncio and in the
OS) will fill up, then the TCP receive window will shrink, slowing down transmission to avoid packet loss.

Since Python can use up to 4 bytes of memory to represent a single character, each connection may use up to
4 * max_size * max_queue bytes of memory to store incoming messages. By default, this is 128 MiB. You
may want to lower the limits, depending on your application’s requirements.

The read_limit argument sets the high-water limit of the buffer for incoming bytes. The low-water limit is half
the high-water limit. The default value is 64 KiB, half of asyncio’s default (based on the current implementation
of StreamReader).

The write_limit argument sets the high-water limit of the buffer for outgoing bytes. The low-water limit is
a quarter of the high-water limit. The default value is 64 KiB, equal to asyncio’s default (based on the current
implementation of FlowControlMixin).

As soon as the HTTP request and response in the opening handshake are processed:

• the request path is available in the path attribute;

• the request and response HTTP headers are available in the request_headers and response_headers
attributes, which are Headers instances.

If a subprotocol was negotiated, it’s available in the subprotocol attribute.

Once the connection is closed, the code is available in the close_code attribute and the reason in
close_reason.

All attributes must be treated as read-only.

38 Chapter 3. Reference

https://tools.ietf.org/html/rfc6455#section-5.5.2
https://tools.ietf.org/html/rfc6455#section-5.5.3
https://docs.python.org/3/library/asyncio-task.html#asyncio.wait_for
https://docs.python.org/3/library/asyncio.html#module-asyncio
https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamReader

websockets Documentation, Release 9.0

local_address

Local address of the connection as a (host, port) tuple.

When the connection isn’t open, local_address is None.

Return type
Any

remote_address

Remote address of the connection as a (host, port) tuple.

When the connection isn’t open, remote_address is None.

Return type
Any

open

True when the connection is usable.

It may be used to detect disconnections. However, this approach is discouraged per the EAFP principle.

When open is False, using the connection raises a ConnectionClosed exception.

Return type
bool

closed

True once the connection is closed.

Be aware that both open and closed are False during the opening and closing sequences.

Return type
bool

path

Path of the HTTP request.

Available once the connection is open.

request_headers

HTTP request headers as a Headers instance.

Available once the connection is open.

response_headers

HTTP response headers as a Headers instance.

Available once the connection is open.

subprotocol

Subprotocol, if one was negotiated.

Available once the connection is open.

close_code

WebSocket close code.

Available once the connection is closed.

close_reason

WebSocket close reason.

Available once the connection is closed.

3.1. API 39

https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/glossary.html#term-eafp
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

websockets Documentation, Release 9.0

await process_request(path, request_headers)
Intercept the HTTP request and return an HTTP response if appropriate.

If process_request returns None, the WebSocket handshake continues. If it returns 3-uple containing a
status code, response headers and a response body, that HTTP response is sent and the connection is closed.
In that case:

• The HTTP status must be a HTTPStatus.

• HTTP headers must be a Headers instance, a Mapping, or an iterable of (name, value) pairs.

• The HTTP response body must be bytes. It may be empty.

This coroutine may be overridden in a WebSocketServerProtocol subclass, for example:

• to return a HTTP 200 OK response on a given path; then a load balancer can use this path for a health
check;

• to authenticate the request and return a HTTP 401 Unauthorized or a HTTP 403 Forbidden when
authentication fails.

Instead of subclassing, it is possible to override this method by passing a process_request argument
to the serve() function or the WebSocketServerProtocol constructor. This is equivalent, except
process_request won’t have access to the protocol instance, so it can’t store information for later use.

process_request is expected to complete quickly. If it may run for a long time, then it should await
wait_closed() and exit if wait_closed() completes, or else it could prevent the server from shutting
down.

Parameters

• path (str) – request path, including optional query string

• request_headers (Headers) – request headers

Return type
Optional[Tuple[HTTPStatus, Union[Headers, Mapping[str, str],
Iterable[Tuple[str, str]]], bytes]]

select_subprotocol(client_subprotocols, server_subprotocols)
Pick a subprotocol among those offered by the client.

If several subprotocols are supported by the client and the server, the default implementation selects the
preferred subprotocols by giving equal value to the priorities of the client and the server.

If no subprotocol is supported by the client and the server, it proceeds without a subprotocol.

This is unlikely to be the most useful implementation in practice, as many servers providing a subprotocol
will require that the client uses that subprotocol. Such rules can be implemented in a subclass.

Instead of subclassing, it is possible to override this method by passing a select_subprotocol argument
to the serve() function or the WebSocketServerProtocol constructor.

Parameters

• client_subprotocols (Sequence[NewType()(Subprotocol, str)]) – list of subpro-
tocols offered by the client

• server_subprotocols (Sequence[NewType()(Subprotocol, str)]) – list of subpro-
tocols available on the server

Return type
Optional[NewType()(Subprotocol, str)]

40 Chapter 3. Reference

https://docs.python.org/3/library/http.html#http.HTTPStatus
https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/http.html#http.HTTPStatus
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str

websockets Documentation, Release 9.0

await recv()

Receive the next message.

Return a str for a text frame and bytes for a binary frame.

When the end of the message stream is reached, recv() raises ConnectionClosed . Specifically, it raises
ConnectionClosedOK after a normal connection closure and ConnectionClosedError after a protocol
error or a network failure.

Canceling recv() is safe. There’s no risk of losing the next message. The next invocation of recv() will
return it. This makes it possible to enforce a timeout by wrapping recv() in wait_for().

Raises

• ConnectionClosed – when the connection is closed

• RuntimeError – if two coroutines call recv() concurrently

Return type
Union[str, bytes]

await send(message)
Send a message.

A string (str) is sent as a Text frame. A bytestring or bytes-like object (bytes, bytearray, or
memoryview) is sent as a Binary frame.

send() also accepts an iterable or an asynchronous iterable of strings, bytestrings, or bytes-like objects.
In that case the message is fragmented. Each item is treated as a message fragment and sent in its own
frame. All items must be of the same type, or else send() will raise a TypeError and the connection will
be closed.

send() rejects dict-like objects because this is often an error. If you wish to send the keys of a dict-like
object as fragments, call its keys() method and pass the result to send().

Canceling send() is discouraged. Instead, you should close the connection with close(). Indeed, there
are only two situations where send() may yield control to the event loop:

1. The write buffer is full. If you don’t want to wait until enough data is sent, your only alternative is to
close the connection. close() will likely time out then abort the TCP connection.

2. message is an asynchronous iterator that yields control. Stopping in the middle of a fragmented
message will cause a protocol error. Closing the connection has the same effect.

Raises
TypeError – for unsupported inputs

Return type
None

await ping(data=None)
Send a ping.

Return a Future that will be completed when the corresponding pong is received. You can ignore it if you
don’t intend to wait.

A ping may serve as a keepalive or as a check that the remote endpoint received all messages up to this
point:

pong_waiter = await ws.ping()
await pong_waiter # only if you want to wait for the pong

3.1. API 41

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/asyncio-task.html#asyncio.wait_for
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://tools.ietf.org/html/rfc6455#section-5.6
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/stdtypes.html#memoryview
https://tools.ietf.org/html/rfc6455#section-5.6
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#dict.keys
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/asyncio-future.html#asyncio.Future

websockets Documentation, Release 9.0

By default, the ping contains four random bytes. This payload may be overridden with the optional data
argument which must be a string (which will be encoded to UTF-8) or a bytes-like object.

Canceling ping() is discouraged. If ping() doesn’t return immediately, it means the write buffer is full.
If you don’t want to wait, you should close the connection.

Canceling the Future returned by ping() has no effect.

Return type
Awaitable[None]

await pong(data=b'')
Send a pong.

An unsolicited pong may serve as a unidirectional heartbeat.

The payload may be set with the optional data argument which must be a string (which will be encoded to
UTF-8) or a bytes-like object.

Canceling pong() is discouraged for the same reason as ping().

Return type
None

await close(code=1000, reason='')
Perform the closing handshake.

close() waits for the other end to complete the handshake and for the TCP connection to terminate. As a
consequence, there’s no need to await wait_closed(); close() already does it.

close() is idempotent: it doesn’t do anything once the connection is closed.

Wrapping close() in create_task() is safe, given that errors during connection termination aren’t par-
ticularly useful.

Canceling close() is discouraged. If it takes too long, you can set a shorter close_timeout. If you don’t
want to wait, let the Python process exit, then the OS will close the TCP connection.

Parameters

• code (int) – WebSocket close code

• reason (str) – WebSocket close reason

Return type
None

await wait_closed()

Wait until the connection is closed.

This is identical to closed , except it can be awaited.

This can make it easier to handle connection termination, regardless of its cause, in tasks that interact with
the WebSocket connection.

Return type
None

42 Chapter 3. Reference

https://docs.python.org/3/library/asyncio-future.html#asyncio.Future
https://docs.python.org/3/library/typing.html#typing.Awaitable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/asyncio-task.html#asyncio.create_task
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

websockets Documentation, Release 9.0

Basic authentication

websockets.auth.basic_auth_protocol_factory(realm, credentials=None, check_credentials=None,
create_protocol=None)

Protocol factory that enforces HTTP Basic Auth.

basic_auth_protocol_factory is designed to integrate with serve() like this:

websockets.serve(
...,
create_protocol=websockets.basic_auth_protocol_factory(

realm="my dev server",
credentials=("hello", "iloveyou"),

)
)

realm indicates the scope of protection. It should contain only ASCII characters because the encoding of non-
ASCII characters is undefined. Refer to section 2.2 of RFC 7235 for details.

credentials defines hard coded authorized credentials. It can be a (username, password) pair or a list of
such pairs.

check_credentials defines a coroutine that checks whether credentials are authorized. This coroutine receives
username and password arguments and returns a bool.

One of credentials or check_credentials must be provided but not both.

By default, basic_auth_protocol_factory creates a factory for building
BasicAuthWebSocketServerProtocol instances. You can override this with the create_protocol
parameter.

Parameters

• realm (str) – scope of protection

• credentials (Union[Tuple[str, str], Iterable[Tuple[str, str]], None]) – hard
coded credentials

• check_credentials (Optional[Callable[[str, str], Awaitable[bool]]]) – coroutine
that verifies credentials

Raises
TypeError – if the credentials argument has the wrong type

Return type
Callable[[Any], BasicAuthWebSocketServerProtocol]

class websockets.auth.BasicAuthWebSocketServerProtocol(*args, realm, check_credentials, **kwargs)
WebSocket server protocol that enforces HTTP Basic Auth.

await process_request(path, request_headers)
Check HTTP Basic Auth and return a HTTP 401 or 403 response if needed.

Return type
Optional[Tuple[HTTPStatus, Union[Headers, Mapping[str, str],
Iterable[Tuple[str, str]]], bytes]]

username

Username of the authenticated user.

3.1. API 43

https://datatracker.ietf.org/doc/html/rfc7235.html
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Awaitable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/http.html#http.HTTPStatus
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes

websockets Documentation, Release 9.0

3.1.3 Extensions

Per-Message Deflate

websockets.extensions.permessage_deflate implements the Compression Extensions for WebSocket as spec-
ified in RFC 7692.

class websockets.extensions.permessage_deflate.ClientPerMessageDeflateFactory(server_no_context_takeover=False,
client_no_context_takeover=False,
server_max_window_bits=None,
client_max_window_bits=None,
com-
press_settings=None)

Client-side extension factory for the Per-Message Deflate extension.

Parameters behave as described in section 7.1 of RFC 7692. Set them to True to include them in the negotiation
offer without a value or to an integer value to include them with this value.

Parameters

• server_no_context_takeover (bool) – defaults to False

• client_no_context_takeover (bool) – defaults to False

• server_max_window_bits (Optional[int]) – optional, defaults to None

• client_max_window_bits (Union[int, bool, None]) – optional, defaults to None

• compress_settings (Optional[Dict[str, Any]]) – optional, keyword arguments for
zlib.compressobj(), excluding wbits

class websockets.extensions.permessage_deflate.ServerPerMessageDeflateFactory(server_no_context_takeover=False,
client_no_context_takeover=False,
server_max_window_bits=None,
client_max_window_bits=None,
com-
press_settings=None)

Server-side extension factory for the Per-Message Deflate extension.

Parameters behave as described in section 7.1 of RFC 7692. Set them to True to include them in the negotiation
offer without a value or to an integer value to include them with this value.

Parameters

• server_no_context_takeover (bool) – defaults to False

• client_no_context_takeover (bool) – defaults to False

• server_max_window_bits (Optional[int]) – optional, defaults to None

• client_max_window_bits (Optional[int]) – optional, defaults to None

• compress_settings (Optional[Dict[str, Any]]) – optional, keyword arguments for
zlib.compressobj(), excluding wbits

44 Chapter 3. Reference

https://datatracker.ietf.org/doc/html/rfc7692.html
https://tools.ietf.org/html/rfc7692#section-7.1
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/zlib.html#zlib.compressobj
https://tools.ietf.org/html/rfc7692#section-7.1
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/zlib.html#zlib.compressobj

websockets Documentation, Release 9.0

Abstract classes

class websockets.extensions.Extension

Abstract class for extensions.

decode(frame, *, max_size=None)
Decode an incoming frame.

Parameters

• frame (Frame) – incoming frame

• max_size (Optional[int]) – maximum payload size in bytes

Return type
Frame

encode(frame)
Encode an outgoing frame.

Parameters
frame (Frame) – outgoing frame

Return type
Frame

property name: ExtensionName

Extension identifier.

Return type
NewType()(ExtensionName, str)

class websockets.extensions.ClientExtensionFactory

Abstract class for client-side extension factories.

get_request_params()

Build request parameters.

Return a list of (name, value) pairs.

Return type
List[Tuple[str, Optional[str]]]

property name: ExtensionName

Extension identifier.

Return type
NewType()(ExtensionName, str)

process_response_params(params, accepted_extensions)
Process response parameters received from the server.

Parameters

• params (Sequence[Tuple[str, Optional[str]]]) – list of (name, value) pairs.

• accepted_extensions (Sequence[Extension]) – list of previously accepted exten-
sions.

Raises
NegotiationError – if parameters aren’t acceptable

3.1. API 45

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence

websockets Documentation, Release 9.0

Return type
Extension

class websockets.extensions.ServerExtensionFactory

Abstract class for server-side extension factories.

property name: ExtensionName

Extension identifier.

Return type
NewType()(ExtensionName, str)

process_request_params(params, accepted_extensions)
Process request parameters received from the client.

To accept the offer, return a 2-uple containing:

• response parameters: a list of (name, value) pairs

• an extension: an instance of a subclass of Extension

Parameters

• params (Sequence[Tuple[str, Optional[str]]]) – list of (name, value) pairs.

• accepted_extensions (Sequence[Extension]) – list of previously accepted exten-
sions.

Raises
NegotiationError – to reject the offer, if parameters aren’t acceptable

Return type
Tuple[List[Tuple[str, Optional[str]]], Extension]

3.1.4 Utilities

Data structures

websockets.datastructures defines a class for manipulating HTTP headers.

class websockets.datastructures.Headers(*args, **kwargs)
Efficient data structure for manipulating HTTP headers.

A list of (name, values) is inefficient for lookups.

A dict doesn’t suffice because header names are case-insensitive and multiple occurrences of headers with the
same name are possible.

Headers stores HTTP headers in a hybrid data structure to provide efficient insertions and lookups while pre-
serving the original data.

In order to account for multiple values with minimal hassle, Headers follows this logic:

• When getting a header with headers[name]:

– if there’s no value, KeyError is raised;

– if there’s exactly one value, it’s returned;

– if there’s more than one value, MultipleValuesError is raised.

• When setting a header with headers[name] = value, the value is appended to the list of values for that
header.

46 Chapter 3. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#KeyError

websockets Documentation, Release 9.0

• When deleting a header with del headers[name], all values for that header are removed (this is slow).

Other methods for manipulating headers are consistent with this logic.

As long as no header occurs multiple times, Headers behaves like dict, except keys are lower-cased to provide
case-insensitivity.

Two methods support manipulating multiple values explicitly:

• get_all() returns a list of all values for a header;

• raw_items() returns an iterator of (name, values) pairs.

clear()

Remove all headers.

Return type
None

get_all(key)
Return the (possibly empty) list of all values for a header.

Parameters
key (str) – header name

Return type
List[str]

raw_items()

Return an iterator of all values as (name, value) pairs.

Return type
Iterator[Tuple[str, str]]

exception websockets.datastructures.MultipleValuesError

Exception raised when Headers has more than one value for a key.

Exceptions

websockets.exceptions defines the following exception hierarchy:

• WebSocketException

– ConnectionClosed

∗ ConnectionClosedError

∗ ConnectionClosedOK

– InvalidHandshake

∗ SecurityError

∗ InvalidMessage

∗ InvalidHeader

· InvalidHeaderFormat

· InvalidHeaderValue

· InvalidOrigin

· InvalidUpgrade

3.1. API 47

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

websockets Documentation, Release 9.0

∗ InvalidStatusCode

∗ NegotiationError

· DuplicateParameter

· InvalidParameterName

· InvalidParameterValue

∗ AbortHandshake

∗ RedirectHandshake

– InvalidState

– InvalidURI

– PayloadTooBig

– ProtocolError

exception websockets.exceptions.AbortHandshake(status, headers, body=b'')
Raised to abort the handshake on purpose and return a HTTP response.

This exception is an implementation detail.

The public API is process_request().

exception websockets.exceptions.ConnectionClosed(code, reason)
Raised when trying to interact with a closed connection.

Provides the connection close code and reason in its code and reason attributes respectively.

exception websockets.exceptions.ConnectionClosedError(code, reason)
Like ConnectionClosed , when the connection terminated with an error.

This means the close code is different from 1000 (OK) and 1001 (going away).

exception websockets.exceptions.ConnectionClosedOK(code, reason)
Like ConnectionClosed , when the connection terminated properly.

This means the close code is 1000 (OK) or 1001 (going away).

exception websockets.exceptions.DuplicateParameter(name)
Raised when a parameter name is repeated in an extension header.

exception websockets.exceptions.InvalidHandshake

Raised during the handshake when the WebSocket connection fails.

exception websockets.exceptions.InvalidHeader(name, value=None)
Raised when a HTTP header doesn’t have a valid format or value.

exception websockets.exceptions.InvalidHeaderFormat(name, error, header, pos)
Raised when a HTTP header cannot be parsed.

The format of the header doesn’t match the grammar for that header.

exception websockets.exceptions.InvalidHeaderValue(name, value=None)
Raised when a HTTP header has a wrong value.

The format of the header is correct but a value isn’t acceptable.

exception websockets.exceptions.InvalidMessage

Raised when a handshake request or response is malformed.

48 Chapter 3. Reference

websockets Documentation, Release 9.0

exception websockets.exceptions.InvalidOrigin(origin)
Raised when the Origin header in a request isn’t allowed.

exception websockets.exceptions.InvalidParameterName(name)
Raised when a parameter name in an extension header is invalid.

exception websockets.exceptions.InvalidParameterValue(name, value)
Raised when a parameter value in an extension header is invalid.

exception websockets.exceptions.InvalidState

Raised when an operation is forbidden in the current state.

This exception is an implementation detail.

It should never be raised in normal circumstances.

exception websockets.exceptions.InvalidStatusCode(status_code)
Raised when a handshake response status code is invalid.

The integer status code is available in the status_code attribute.

exception websockets.exceptions.InvalidURI(uri)
Raised when connecting to an URI that isn’t a valid WebSocket URI.

exception websockets.exceptions.InvalidUpgrade(name, value=None)
Raised when the Upgrade or Connection header isn’t correct.

exception websockets.exceptions.NegotiationError

Raised when negotiating an extension fails.

exception websockets.exceptions.PayloadTooBig

Raised when receiving a frame with a payload exceeding the maximum size.

exception websockets.exceptions.ProtocolError

Raised when a frame breaks the protocol.

exception websockets.exceptions.RedirectHandshake(uri)
Raised when a handshake gets redirected.

This exception is an implementation detail.

exception websockets.exceptions.SecurityError

Raised when a handshake request or response breaks a security rule.

Security limits are hard coded.

exception websockets.exceptions.WebSocketException

Base class for all exceptions defined by websockets.

websockets.exceptions.WebSocketProtocolError

alias of ProtocolError

3.1. API 49

websockets Documentation, Release 9.0

Types

websockets.typing.Origin(x)
Value of a Origin header

websockets.typing.Subprotocol(x)
Subprotocol value in a Sec-WebSocket-Protocol header

All public APIs can be imported from the websockets package, unless noted otherwise. This convenience feature is
incompatible with static code analysis tools such as mypy, though.

Anything that isn’t listed in this API documentation is a private API. There’s no guarantees of behavior or backwards-
compatibility for private APIs.

50 Chapter 3. Reference

https://github.com/python/mypy

CHAPTER

FOUR

DISCUSSIONS

Get a deeper understanding of how websockets is built and why.

4.1 Design

This document describes the design of websockets. It assumes familiarity with the specification of the WebSocket
protocol in RFC 6455.

It’s primarily intended at maintainers. It may also be useful for users who wish to understand what happens under the
hood.

Warning: Internals described in this document may change at any time.

Backwards compatibility is only guaranteed for public APIs.

4.1.1 Lifecycle

State

WebSocket connections go through a trivial state machine:

• CONNECTING: initial state,

• OPEN: when the opening handshake is complete,

• CLOSING: when the closing handshake is started,

• CLOSED: when the TCP connection is closed.

Transitions happen in the following places:

• CONNECTING -> OPEN: in connection_open() which runs when the opening handshake completes and the
WebSocket connection is established — not to be confused with connection_made() which runs when the
TCP connection is established;

• OPEN -> CLOSING: in write_frame() immediately before sending a close frame; since receiving a close
frame triggers sending a close frame, this does the right thing regardless of which side started the closing hand-
shake; also in fail_connection() which duplicates a few lines of code from write_close_frame() and
write_frame();

• * -> CLOSED: in connection_lost()which is always called exactly once when the TCP connection is closed.

51

https://datatracker.ietf.org/doc/html/rfc6455.html

websockets Documentation, Release 9.0

Coroutines

The following diagram shows which coroutines are running at each stage of the connection lifecycle on the client side.

The lifecycle is identical on the server side, except inversion of control makes the equivalent of connect() implicit.

Coroutines shown in green are called by the application. Multiple coroutines may interact with the WebSocket con-
nection concurrently.

Coroutines shown in gray manage the connection. When the opening handshake succeeds, connection_open() starts
two tasks:

• transfer_data_task runs transfer_data() which handles incoming data and lets recv() consume it. It
may be canceled to terminate the connection. It never exits with an exception other than CancelledError. See
data transfer below.

• keepalive_ping_task runs keepalive_ping() which sends Ping frames at regular intervals and ensures
that corresponding Pong frames are received. It is canceled when the connection terminates. It never exits with
an exception other than CancelledError.

• close_connection_task runs close_connection()which waits for the data transfer to terminate, then takes
care of closing the TCP connection. It must not be canceled. It never exits with an exception. See connection
termination below.

Besides, fail_connection() starts the same close_connection_task when the opening handshake fails, in order
to close the TCP connection.

Splitting the responsibilities between two tasks makes it easier to guarantee that websockets can terminate connec-
tions:

• within a fixed timeout,

• without leaking pending tasks,

• without leaking open TCP connections,

regardless of whether the connection terminates normally or abnormally.

transfer_data_task completes when no more data will be received on the connection. Under normal circumstances,
it exits after exchanging close frames.

close_connection_task completes when the TCP connection is closed.

4.1.2 Opening handshake

websockets performs the opening handshake when establishing a WebSocket connection. On the client side,
connect() executes it before returning the protocol to the caller. On the server side, it’s executed before passing
the protocol to the ws_handler coroutine handling the connection.

While the opening handshake is asymmetrical — the client sends an HTTP Upgrade request and the server replies with
an HTTP Switching Protocols response — websockets aims at keeping the implementation of both sides consistent
with one another.

On the client side, handshake():

• builds a HTTP request based on the uri and parameters passed to connect();

• writes the HTTP request to the network;

• reads a HTTP response from the network;

52 Chapter 4. Discussions

_images/lifecycle.svg
https://docs.python.org/3/library/asyncio-exceptions.html#asyncio.CancelledError
https://docs.python.org/3/library/asyncio-exceptions.html#asyncio.CancelledError

websockets Documentation, Release 9.0

• checks the HTTP response, validates extensions and subprotocol, and configures the protocol accordingly;

• moves to the OPEN state.

On the server side, handshake():

• reads a HTTP request from the network;

• calls process_request() which may abort the WebSocket handshake and return a HTTP response instead;
this hook only makes sense on the server side;

• checks the HTTP request, negotiates extensions and subprotocol, and configures the protocol accordingly;

• builds a HTTP response based on the above and parameters passed to serve();

• writes the HTTP response to the network;

• moves to the OPEN state;

• returns the path part of the uri.

The most significant asymmetry between the two sides of the opening handshake lies in the negotiation of extensions
and, to a lesser extent, of the subprotocol. The server knows everything about both sides and decides what the param-
eters should be for the connection. The client merely applies them.

If anything goes wrong during the opening handshake, websockets fails the connection.

4.1.3 Data transfer

Symmetry

Once the opening handshake has completed, the WebSocket protocol enters the data transfer phase. This part is almost
symmetrical. There are only two differences between a server and a client:

• client-to-server masking: the client masks outgoing frames; the server unmasks incoming frames;

• closing the TCP connection: the server closes the connection immediately; the client waits for the server to do
it.

These differences are so minor that all the logic for data framing, for sending and receiving data and for closing the
connection is implemented in the same class, WebSocketCommonProtocol.

The is_client attribute tells which side a protocol instance is managing. This attribute is defined on the
WebSocketServerProtocol and WebSocketClientProtocol classes.

Data flow

The following diagram shows how data flows between an application built on top of websockets and a remote endpoint.
It applies regardless of which side is the server or the client.

Public methods are shown in green, private methods in yellow, and buffers in orange. Methods related to connection
termination are omitted; connection termination is discussed in another section below.

4.1. Design 53

https://tools.ietf.org/html/rfc6455#section-5.3
https://tools.ietf.org/html/rfc6455#section-5.5.1
https://tools.ietf.org/html/rfc6455#section-5
https://tools.ietf.org/html/rfc6455#section-6
https://tools.ietf.org/html/rfc6455#section-7
https://tools.ietf.org/html/rfc6455#section-7
_images/protocol.svg

websockets Documentation, Release 9.0

Receiving data

The left side of the diagram shows how websockets receives data.

Incoming data is written to a StreamReader in order to implement flow control and provide backpressure on the TCP
connection.

transfer_data_task, which is started when the WebSocket connection is established, processes this data.

When it receives data frames, it reassembles fragments and puts the resulting messages in the messages queue.

When it encounters a control frame:

• if it’s a close frame, it starts the closing handshake;

• if it’s a ping frame, it answers with a pong frame;

• if it’s a pong frame, it acknowledges the corresponding ping (unless it’s an unsolicited pong).

Running this process in a task guarantees that control frames are processed promptly. Without such a task, websockets
would depend on the application to drive the connection by having exactly one coroutine awaiting recv() at any time.
While this happens naturally in many use cases, it cannot be relied upon.

Then recv() fetches the next message from the messages queue, with some complexity added for handling backpres-
sure and termination correctly.

Sending data

The right side of the diagram shows how websockets sends data.

send() writes one or several data frames containing the message. While sending a fragmented message, concurrent
calls to send() are put on hold until all fragments are sent. This makes concurrent calls safe.

ping() writes a ping frame and yields a Future which will be completed when a matching pong frame is received.

pong() writes a pong frame.

close() writes a close frame and waits for the TCP connection to terminate.

Outgoing data is written to a StreamWriter in order to implement flow control and provide backpressure from the
TCP connection.

Closing handshake

When the other side of the connection initiates the closing handshake, read_message() receives a close frame while
in the OPEN state. It moves to the CLOSING state, sends a close frame, and returns None, causing transfer_data_task
to terminate.

When this side of the connection initiates the closing handshake with close(), it moves to the CLOSING state and
sends a close frame. When the other side sends a close frame, read_message() receives it in the CLOSING state and
returns None, also causing transfer_data_task to terminate.

If the other side doesn’t send a close frame within the connection’s close timeout, websockets fails the connection.

The closing handshake can take up to 2 * close_timeout: one close_timeout to write a close frame and one
close_timeout to receive a close frame.

Then websockets terminates the TCP connection.

54 Chapter 4. Discussions

https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamReader
https://docs.python.org/3/library/asyncio-future.html#asyncio.Future
https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamWriter

websockets Documentation, Release 9.0

4.1.4 Connection termination

close_connection_task, which is started when the WebSocket connection is established, is responsible for eventu-
ally closing the TCP connection.

First close_connection_task waits for transfer_data_task to terminate, which may happen as a result of:

• a successful closing handshake: as explained above, this exits the infinite loop in transfer_data_task;

• a timeout while waiting for the closing handshake to complete: this cancels transfer_data_task;

• a protocol error, including connection errors: depending on the exception, transfer_data_task fails the con-
nection with a suitable code and exits.

close_connection_task is separate from transfer_data_task to make it easier to implement the timeout on
the closing handshake. Canceling transfer_data_task creates no risk of canceling close_connection_task and
failing to close the TCP connection, thus leaking resources.

Then close_connection_task cancels keepalive_ping. This task has no protocol compliance responsibilities.
Terminating it to avoid leaking it is the only concern.

Terminating the TCP connection can take up to 2 * close_timeout on the server side and 3 * close_timeout
on the client side. Clients start by waiting for the server to close the connection, hence the extra close_timeout.
Then both sides go through the following steps until the TCP connection is lost: half-closing the connection (only for
non-TLS connections), closing the connection, aborting the connection. At this point the connection drops regardless
of what happens on the network.

4.1.5 Connection failure

If the opening handshake doesn’t complete successfully, websockets fails the connection by closing the TCP connec-
tion.

Once the opening handshake has completed, websockets fails the connection by canceling transfer_data_task
and sending a close frame if appropriate.

transfer_data_task exits, unblocking close_connection_task, which closes the TCP connection.

4.1.6 Server shutdown

WebSocketServer closes asynchronously like asyncio.Server. The shutdown happen in two steps:

1. Stop listening and accepting new connections;

2. Close established connections with close code 1001 (going away) or, if the opening handshake is still in progress,
with HTTP status code 503 (Service Unavailable).

The first call to close starts a task that performs this sequence. Further calls are ignored. This is the easiest way to
make close and wait_closed idempotent.

4.1. Design 55

https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.Server

websockets Documentation, Release 9.0

4.1.7 Cancellation

User code

websockets provides a WebSocket application server. It manages connections and passes them to user-provided
connection handlers. This is an inversion of control scenario: library code calls user code.

If a connection drops, the corresponding handler should terminate. If the server shuts down, all connection handlers
must terminate. Canceling connection handlers would terminate them.

However, using cancellation for this purpose would require all connection handlers to handle it properly. For example,
if a connection handler starts some tasks, it should catch CancelledError, terminate or cancel these tasks, and then
re-raise the exception.

Cancellation is tricky in asyncio applications, especially when it interacts with finalization logic. In the example
above, what if a handler gets interrupted with CancelledError while it’s finalizing the tasks it started, after detecting
that the connection dropped?

websockets considers that cancellation may only be triggered by the caller of a coroutine when it doesn’t care about
the results of that coroutine anymore. (Source: Guido van Rossum). Since connection handlers run arbitrary user code,
websockets has no way of deciding whether that code is still doing something worth caring about.

For these reasons, websockets never cancels connection handlers. Instead it expects them to detect when the connec-
tion is closed, execute finalization logic if needed, and exit.

Conversely, cancellation isn’t a concern for WebSocket clients because they don’t involve inversion of control.

Library

Most public APIs of websockets are coroutines. They may be canceled, for example if the user starts a task that calls
these coroutines and cancels the task later. websockets must handle this situation.

Cancellation during the opening handshake is handled like any other exception: the TCP connection is closed and the
exception is re-raised. This can only happen on the client side. On the server side, the opening handshake is managed
by websockets and nothing results in a cancellation.

Once the WebSocket connection is established, internal tasks transfer_data_task and close_connection_task
mustn’t get accidentally canceled if a coroutine that awaits them is canceled. In other words, they must be shielded
from cancellation.

recv() waits for the next message in the queue or for transfer_data_task to terminate, whichever comes first.
It relies on wait() for waiting on two futures in parallel. As a consequence, even though it’s waiting on a Future
signaling the next message and on transfer_data_task, it doesn’t propagate cancellation to them.

ensure_open() is called by send(), ping(), and pong(). When the connection state is CLOSING, it waits for
transfer_data_task but shields it to prevent cancellation.

close() waits for the data transfer task to terminate with wait_for(). If it’s canceled or if the timeout elapses,
transfer_data_task is canceled, which is correct at this point. close() then waits for close_connection_task
but shields it to prevent cancellation.

close() and fail_connection() are the only places where transfer_data_task may be canceled.

close_connnection_task starts by waiting for transfer_data_task. It catches CancelledError to prevent a
cancellation of transfer_data_task from propagating to close_connnection_task.

56 Chapter 4. Discussions

https://docs.python.org/3/library/asyncio-exceptions.html#asyncio.CancelledError
https://docs.python.org/3/library/asyncio.html#module-asyncio
https://docs.python.org/3/library/asyncio-exceptions.html#asyncio.CancelledError
https://groups.google.com/forum/#!msg/python-tulip/LZQe38CR3bg/7qZ1p_q5yycJ
https://docs.python.org/3/library/asyncio-task.html#asyncio.wait
https://docs.python.org/3/library/asyncio-future.html#asyncio.Future
https://docs.python.org/3/library/asyncio-task.html#asyncio.wait_for
https://docs.python.org/3/library/asyncio-exceptions.html#asyncio.CancelledError

websockets Documentation, Release 9.0

4.1.8 Backpressure

Note: This section discusses backpressure from the perspective of a server but the concept applies to clients symmet-
rically.

With a naive implementation, if a server receives inputs faster than it can process them, or if it generates outputs faster
than it can send them, data accumulates in buffers, eventually causing the server to run out of memory and crash.

The solution to this problem is backpressure. Any part of the server that receives inputs faster than it can process them
and send the outputs must propagate that information back to the previous part in the chain.

websockets is designed to make it easy to get backpressure right.

For incoming data, websockets builds upon StreamReader which propagates backpressure to its own buffer and to
the TCP stream. Frames are parsed from the input stream and added to a bounded queue. If the queue fills up, parsing
halts until the application reads a frame.

For outgoing data, websockets builds upon StreamWriter which implements flow control. If the output buffers
grow too large, it waits until they’re drained. That’s why all APIs that write frames are asynchronous.

Of course, it’s still possible for an application to create its own unbounded buffers and break the backpressure. Be
careful with queues.

4.1.9 Buffers

Note: This section discusses buffers from the perspective of a server but it applies to clients as well.

An asynchronous systems works best when its buffers are almost always empty.

For example, if a client sends data too fast for a server, the queue of incoming messages will be constantly full. The
server will always be 32 messages (by default) behind the client. This consumes memory and increases latency for no
good reason. The problem is called bufferbloat.

If buffers are almost always full and that problem cannot be solved by adding capacity — typically because the system is
bottlenecked by the output and constantly regulated by backpressure — reducing the size of buffers minimizes negative
consequences.

By default websockets has rather high limits. You can decrease them according to your application’s characteristics.

Bufferbloat can happen at every level in the stack where there is a buffer. For each connection, the receiving side
contains these buffers:

• OS buffers: tuning them is an advanced optimization.

• StreamReader bytes buffer: the default limit is 64 KiB. You can set another limit by passing a read_limit
keyword argument to connect() or serve().

• Incoming messages deque: its size depends both on the size and the number of messages it contains. By default
the maximum UTF-8 encoded size is 1 MiB and the maximum number is 32. In the worst case, after UTF-
8 decoding, a single message could take up to 4 MiB of memory and the overall memory consumption could
reach 128 MiB. You should adjust these limits by setting the max_size and max_queue keyword arguments of
connect() or serve() according to your application’s requirements.

For each connection, the sending side contains these buffers:

• StreamWriter bytes buffer: the default size is 64 KiB. You can set another limit by passing a write_limit
keyword argument to connect() or serve().

4.1. Design 57

https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamReader
https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamWriter
https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamReader
https://docs.python.org/3/library/collections.html#collections.deque
https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamWriter

websockets Documentation, Release 9.0

• OS buffers: tuning them is an advanced optimization.

4.1.10 Concurrency

Awaiting any combination of recv(), send(), close() ping(), or pong() concurrently is safe, including multiple
calls to the same method, with one exception and one limitation.

• Only one coroutine can receive messages at a time. This constraint avoids non-deterministic behavior (and
simplifies the implementation). If a coroutine is awaiting recv(), awaiting it again in another coroutine raises
RuntimeError.

• Sending a fragmented message forces serialization. Indeed, the WebSocket protocol doesn’t support multi-
plexing messages. If a coroutine is awaiting send() to send a fragmented message, awaiting it again in another
coroutine waits until the first call completes. This will be transparent in many cases. It may be a concern if the
fragmented message is generated slowly by an asynchronous iterator.

Receiving frames is independent from sending frames. This isolates recv(), which receives frames, from the other
methods, which send frames.

While the connection is open, each frame is sent with a single write. Combined with the concurrency model of
asyncio, this enforces serialization. The only other requirement is to prevent interleaving other data frames in the
middle of a fragmented message.

After the connection is closed, sending a frame raises ConnectionClosed , which is safe.

4.2 Limitations

The client doesn’t attempt to guarantee that there is no more than one connection to a given IP address in a CONNECT-
ING state.

The client doesn’t support connecting through a proxy.

There is no way to fragment outgoing messages. A message is always sent in a single frame.

4.3 Security

4.3.1 Encryption

For production use, a server should require encrypted connections.

See this example of encrypting connections with TLS.

4.3.2 Memory use

Warning: An attacker who can open an arbitrary number of connections will be able to perform a denial of service
by memory exhaustion. If you’re concerned by denial of service attacks, you must reject suspicious connections
before they reach websockets, typically in a reverse proxy.

With the default settings, opening a connection uses 325 KiB of memory.

58 Chapter 4. Discussions

https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/asyncio.html#module-asyncio

websockets Documentation, Release 9.0

Sending some highly compressed messages could use up to 128 MiB of memory with an amplification factor of 1000
between network traffic and memory use.

Configuring a server to optimize memory usage will improve security in addition to improving performance.

4.3.3 Other limits

websockets implements additional limits on the amount of data it accepts in order to minimize exposure to security
vulnerabilities.

In the opening handshake, websockets limits the number of HTTP headers to 256 and the size of an individual header
to 4096 bytes. These limits are 10 to 20 times larger than what’s expected in standard use cases. They’re hard-coded.
If you need to change them, monkey-patch the constants in websockets.http.

4.3. Security 59

websockets Documentation, Release 9.0

60 Chapter 4. Discussions

CHAPTER

FIVE

PROJECT

This is about websockets-the-project rather than websockets-the-software.

5.1 Changelog

5.1.1 Backwards-compatibility policy

websockets is intended for production use. Therefore, stability is a goal.

websockets also aims at providing the best API for WebSocket in Python.

While we value stability, we value progress more. When an improvement requires changing a public API, we make the
change and document it in this changelog.

When possible with reasonable effort, we preserve backwards-compatibility for five years after the release that intro-
duced the change.

When a release contains backwards-incompatible API changes, the major version is increased, else the minor version
is increased. Patch versions are only for fixing regressions shortly after a release.

Only documented APIs are public. Undocumented APIs are considered private. They may change at any time.

5.1.2 9.1

In development

5.1.3 9.0.2

May 15, 2021

• Restored compatibility of python -m websockets with Python < 3.9.

• Restored compatibility with mypy.

61

websockets Documentation, Release 9.0

5.1.4 9.0.1

May 2, 2021

• Fixed issues with the packaging of the 9.0 release.

5.1.5 9.0

May 1, 2021

Note: Version 9.0 moves or deprecates several APIs.

Aliases provide backwards compatibility for all previously public APIs.

• Headers and MultipleValuesError were moved from websockets.http to websockets.
datastructures. If you’re using them, you should adjust the import path.

• The client, server, protocol, and auth modules were moved from the websockets package to
websockets.legacy sub-package, as part of an upcoming refactoring. Despite the name, they’re still fully
supported. The refactoring should be a transparent upgrade for most uses when it’s available. The legacy imple-
mentation will be preserved according to the backwards-compatibility policy.

• The framing, handshake, headers, http, and urimodules in the websockets package are deprecated. These
modules provided low-level APIs for reuse by other WebSocket implementations, but that never happened. Keep-
ing these APIs public makes it more difficult to improve websockets for no actual benefit.

Note: Version 9.0 may require changes if you use static code analysis tools.

Convenience imports from the websockets module are performed lazily. While this is supported by Python, static
code analysis tools such as mypy are unable to understand the behavior.

If you depend on such tools, use the real import path, which can be found in the API documentation:

from websockets.client import connect
from websockets.server import serve

• Added compatibility with Python 3.9.

• Added support for IRIs in addition to URIs.

• Added close codes 1012, 1013, and 1014.

• Raised an error when passing a dict to send().

• Fixed sending fragmented, compressed messages.

• Fixed Host header sent when connecting to an IPv6 address.

• Fixed creating a client or a server with an existing Unix socket.

• Aligned maximum cookie size with popular web browsers.

• Ensured cancellation always propagates, even on Python versions where CancelledError inherits Exception.

• Improved error reporting.

62 Chapter 5. Project

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/asyncio-exceptions.html#asyncio.CancelledError
https://docs.python.org/3/library/exceptions.html#Exception

websockets Documentation, Release 9.0

5.1.6 8.1

November 1, 2019

• Added compatibility with Python 3.8.

5.1.7 8.0.2

July 31, 2019

• Restored the ability to pass a socket with the sock parameter of serve().

• Removed an incorrect assertion when a connection drops.

5.1.8 8.0.1

July 21, 2019

• Restored the ability to import WebSocketProtocolError from websockets.

5.1.9 8.0

July 7, 2019

Warning: Version 8.0 drops compatibility with Python 3.4 and 3.5.

Note: Version 8.0 expects process_request to be a coroutine.

Previously, it could be a function or a coroutine.

If you’re passing a process_request argument to serve() or WebSocketServerProtocol, or if you’re overriding
process_request() in a subclass, define it with async def instead of def.

For backwards compatibility, functions are still mostly supported, but mixing functions and coroutines won’t work in
some inheritance scenarios.

Note: Version 8.0 changes the behavior of the max_queue parameter.

If you were setting max_queue=0 to make the queue of incoming messages unbounded, change it to max_queue=None.

Note: Version 8.0 deprecates the host , port , and secure attributes of WebSocketCommonProtocol.

Use local_address in servers and remote_address in clients instead of host and port.

Note: Version 8.0 renames the WebSocketProtocolError exception to ProtocolError .

A WebSocketProtocolError alias provides backwards compatibility.

5.1. Changelog 63

websockets Documentation, Release 9.0

Note: Version 8.0 adds the reason phrase to the return type of the low-level API read_response() .

Also:

• send(), ping(), and pong() support bytes-like types bytearray and memoryview in addition to bytes.

• Added ConnectionClosedOK and ConnectionClosedError subclasses of ConnectionClosed to tell apart
normal connection termination from errors.

• Added basic_auth_protocol_factory() to enforce HTTP Basic Auth on the server side.

• connect() handles redirects from the server during the handshake.

• connect() supports overriding host and port.

• Added unix_connect() for connecting to Unix sockets.

• Improved support for sending fragmented messages by accepting asynchronous iterators in send().

• Prevented spurious log messages about ConnectionClosed exceptions in keepalive ping task. If you were using
ping_timeout=None as a workaround, you can remove it.

• Changed WebSocketServer.close() to perform a proper closing handshake instead of failing the connection.

• Avoided a crash when a extra_headers callable returns None.

• Improved error messages when HTTP parsing fails.

• Enabled readline in the interactive client.

• Added type hints (PEP 484).

• Added a FAQ to the documentation.

• Added documentation for extensions.

• Documented how to optimize memory usage.

• Improved API documentation.

5.1.10 7.0

November 1, 2018

Warning: websockets now sends Ping frames at regular intervals and closes the connection if it doesn’t
receive a matching Pong frame.

See WebSocketCommonProtocol for details.

Warning: Version 7.0 changes how a server terminates connections when it’s closed with WebSocketServer.
close() .

Previously, connections handlers were canceled. Now, connections are closed with close code 1001 (going away).
From the perspective of the connection handler, this is the same as if the remote endpoint was disconnecting. This
removes the need to prepare for CancelledError in connection handlers.

You can restore the previous behavior by adding the following line at the beginning of connection handlers:

64 Chapter 5. Project

https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/stdtypes.html#memoryview
https://docs.python.org/3/library/stdtypes.html#bytes
https://peps.python.org/pep-0484/
https://docs.python.org/3/library/asyncio-exceptions.html#asyncio.CancelledError

websockets Documentation, Release 9.0

def handler(websocket, path):
closed = asyncio.ensure_future(websocket.wait_closed())
closed.add_done_callback(lambda task: task.cancel())

Note: Version 7.0 renames the timeout argument of serve() and connect() to close_timeout .

This prevents confusion with ping_timeout.

For backwards compatibility, timeout is still supported.

Note: Version 7.0 changes how a ping() that hasn’t received a pong yet behaves when the connection is closed.

The ping — as in ping = await websocket.ping() — used to be canceled when the connection is closed, so that
await ping raised CancelledError. Now await ping raises ConnectionClosed like other public APIs.

Note: Version 7.0 raises a RuntimeError exception if two coroutines call recv() concurrently.

Concurrent calls lead to non-deterministic behavior because there are no guarantees about which coroutine will receive
which message.

Also:

• Added process_request and select_subprotocol arguments to serve() and
WebSocketServerProtocol to customize process_request() and select_subprotocol() without
subclassing WebSocketServerProtocol.

• Added support for sending fragmented messages.

• Added the wait_closed() method to protocols.

• Added an interactive client: python -m websockets <uri>.

• Changed the origins argument to represent the lack of an origin with None rather than ''.

• Fixed a data loss bug in recv(): canceling it at the wrong time could result in messages being dropped.

• Improved handling of multiple HTTP headers with the same name.

• Improved error messages when a required HTTP header is missing.

5.1.11 6.0

July 16, 2018

Warning: Version 6.0 introduces the Headers class for managing HTTP headers and changes several public
APIs:

• process_request() now receives a Headers instead of a http.client.HTTPMessage in the
request_headers argument.

• The request_headers and response_headers attributes of WebSocketCommonProtocol are Headers
instead of http.client.HTTPMessage.

5.1. Changelog 65

https://docs.python.org/3/library/asyncio-exceptions.html#asyncio.CancelledError
https://docs.python.org/3/library/exceptions.html#RuntimeError

websockets Documentation, Release 9.0

• The raw_request_headers and raw_response_headers attributes of WebSocketCommonProtocol are
removed. Use raw_items() instead.

• Functions defined in the handshake module now receive Headers in argument instead of get_header or
set_header functions. This affects libraries that rely on low-level APIs.

• Functions defined in the http module now return HTTP headers as Headers instead of lists of (name,
value) pairs.

Since Headers and http.client.HTTPMessage provide similar APIs, this change won’t affect most of the code
dealing with HTTP headers.

Also:

• Added compatibility with Python 3.7.

5.1.12 5.0.1

May 24, 2018

• Fixed a regression in 5.0 that broke some invocations of serve() and connect().

5.1.13 5.0

May 22, 2018

Note: Version 5.0 fixes a security issue introduced in version 4.0.

Version 4.0 was vulnerable to denial of service by memory exhaustion because it didn’t enforce max_size when de-
compressing compressed messages (CVE-2018-1000518).

Note: Version 5.0 adds a user_info field to the return value of parse_uri() and WebSocketURI .

If you’re unpacking WebSocketURI into four variables, adjust your code to account for that fifth field.

Also:

• connect() performs HTTP Basic Auth when the URI contains credentials.

• Iterating on incoming messages no longer raises an exception when the connection terminates with close code
1001 (going away).

• A plain HTTP request now receives a 426 Upgrade Required response and doesn’t log a stack trace.

• unix_serve() can be used as an asynchronous context manager on Python 3.5.1.

• Added the closed property to protocols.

• If a ping() doesn’t receive a pong, it’s canceled when the connection is closed.

• Reported the cause of ConnectionClosed exceptions.

• Added new examples in the documentation.

• Updated documentation with new features from Python 3.6.

• Improved several other sections of the documentation.

66 Chapter 5. Project

https://nvd.nist.gov/vuln/detail/CVE-2018-1000518

websockets Documentation, Release 9.0

• Fixed missing close code, which caused TypeError on connection close.

• Fixed a race condition in the closing handshake that raised InvalidState.

• Stopped logging stack traces when the TCP connection dies prematurely.

• Prevented writing to a closing TCP connection during unclean shutdowns.

• Made connection termination more robust to network congestion.

• Prevented processing of incoming frames after failing the connection.

5.1.14 4.0.1

November 2, 2017

• Fixed issues with the packaging of the 4.0 release.

5.1.15 4.0

November 2, 2017

Warning: Version 4.0 drops compatibility with Python 3.3.

Note: Version 4.0 enables compression with the permessage-deflate extension.

In August 2017, Firefox and Chrome support it, but not Safari and IE.

Compression should improve performance but it increases RAM and CPU use.

If you want to disable compression, add compression=None when calling serve() or connect().

Note: Version 4.0 removes the state_name attribute of protocols.

Use protocol.state.name instead of protocol.state_name.

Also:

• WebSocketCommonProtocol instances can be used as asynchronous iterators on Python 3.6. They yield in-
coming messages.

• Added unix_serve() for listening on Unix sockets.

• Added the sockets attribute to the return value of serve().

• Reorganized and extended documentation.

• Aborted connections if they don’t close within the configured timeout.

• Rewrote connection termination to increase robustness in edge cases.

• Stopped leaking pending tasks when cancel() is called on a connection while it’s being closed.

• Reduced verbosity of “Failing the WebSocket connection” logs.

• Allowed extra_headers to override Server and User-Agent headers.

5.1. Changelog 67

https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/asyncio-task.html#asyncio.Task.cancel

websockets Documentation, Release 9.0

5.1.16 3.4

August 20, 2017

• Renamed serve() and connect()’s klass argument to create_protocol to reflect that it can also be a
callable. For backwards compatibility, klass is still supported.

• serve() can be used as an asynchronous context manager on Python 3.5.1.

• Added support for customizing handling of incoming connections with process_request().

• Made read and write buffer sizes configurable.

• Rewrote HTTP handling for simplicity and performance.

• Added an optional C extension to speed up low-level operations.

• An invalid response status code during connect() now raises InvalidStatusCode with a code attribute.

• Providing a sock argument to connect() no longer crashes.

5.1.17 3.3

March 29, 2017

• Ensured compatibility with Python 3.6.

• Reduced noise in logs caused by connection resets.

• Avoided crashing on concurrent writes on slow connections.

5.1.18 3.2

August 17, 2016

• Added timeout, max_size, and max_queue arguments to connect() and serve().

• Made server shutdown more robust.

5.1.19 3.1

April 21, 2016

• Avoided a warning when closing a connection before the opening handshake.

• Added flow control for incoming data.

5.1.20 3.0

December 25, 2015

Warning: Version 3.0 introduces a backwards-incompatible change in the recv() API.

If you’re upgrading from 2.x or earlier, please read this carefully.

recv() used to return None when the connection was closed. This required checking the return value of every call:

68 Chapter 5. Project

websockets Documentation, Release 9.0

message = await websocket.recv()
if message is None:

return

Now it raises a ConnectionClosed exception instead. This is more Pythonic. The previous code can be simplified
to:
message = await websocket.recv()

When implementing a server, which is the more popular use case, there’s no strong reason to handle such exceptions.
Let them bubble up, terminate the handler coroutine, and the server will simply ignore them.

In order to avoid stranding projects built upon an earlier version, the previous behavior can be restored by passing
legacy_recv=True to serve(), connect(), WebSocketServerProtocol, or WebSocketClientProtocol.
legacy_recv isn’t documented in their signatures but isn’t scheduled for deprecation either.

Also:

• connect() can be used as an asynchronous context manager on Python 3.5.1.

• Updated documentation with await and async syntax from Python 3.5.

• ping() and pong() support data passed as str in addition to bytes.

• Worked around an asyncio bug affecting connection termination under load.

• Made state_name attribute on protocols a public API.

• Improved documentation.

5.1.21 2.7

November 18, 2015

• Added compatibility with Python 3.5.

• Refreshed documentation.

5.1.22 2.6

August 18, 2015

• Added local_address and remote_address attributes on protocols.

• Closed open connections with code 1001 when a server shuts down.

• Avoided TCP fragmentation of small frames.

5.1. Changelog 69

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/asyncio.html#module-asyncio

websockets Documentation, Release 9.0

5.1.23 2.5

July 28, 2015

• Improved documentation.

• Provided access to handshake request and response HTTP headers.

• Allowed customizing handshake request and response HTTP headers.

• Added support for running on a non-default event loop.

• Returned a 403 status code instead of 400 when the request Origin isn’t allowed.

• Canceling recv() no longer drops the next message.

• Clarified that the closing handshake can be initiated by the client.

• Set the close code and reason more consistently.

• Strengthened connection termination by simplifying the implementation.

• Improved tests, added tox configuration, and enforced 100% branch coverage.

5.1.24 2.4

January 31, 2015

• Added support for subprotocols.

• Added loop argument to connect() and serve().

5.1.25 2.3

November 3, 2014

• Improved compliance of close codes.

5.1.26 2.2

July 28, 2014

• Added support for limiting message size.

5.1.27 2.1

April 26, 2014

• Added host, port and secure attributes on protocols.

• Added support for providing and checking Origin.

70 Chapter 5. Project

https://tools.ietf.org/html/rfc6455#section-10.2

websockets Documentation, Release 9.0

5.1.28 2.0

February 16, 2014

Warning: Version 2.0 introduces a backwards-incompatible change in the send(), ping(), and pong()
APIs.

If you’re upgrading from 1.x or earlier, please read this carefully.

These APIs used to be functions. Now they’re coroutines.

Instead of:
websocket.send(message)

you must now write:

await websocket.send(message)

Also:

• Added flow control for outgoing data.

5.1.29 1.0

November 14, 2013

• Initial public release.

5.2 Contributing

Thanks for taking the time to contribute to websockets!

5.2.1 Code of Conduct

This project and everyone participating in it is governed by the Code of Conduct. By participating, you are expected
to uphold this code. Please report inappropriate behavior to aymeric DOT augustin AT fractalideas DOT com.

(If I’m the person with the inappropriate behavior, please accept my apologies. I know I can mess up. I can’t expect
you to tell me, but if you choose to do so, I’ll do my best to handle criticism constructively. – Aymeric)

5.2.2 Contributions

Bug reports, patches and suggestions are welcome!

Please open an issue or send a pull request.

Feedback about the documentation is especially valuable — the authors of websockets feel more confident about
writing code than writing docs :-)

If you’re wondering why things are done in a certain way, the design document provides lots of details about the internals
of websockets.

5.2. Contributing 71

https://github.com/aaugustin/websockets/blob/master/CODE_OF_CONDUCT.md
https://github.com/aaugustin/websockets/issues/new
https://github.com/aaugustin/websockets/compare/

websockets Documentation, Release 9.0

5.2.3 Questions

GitHub issues aren’t a good medium for handling questions. There are better places to ask questions, for example Stack
Overflow.

If you want to ask a question anyway, please make sure that:

• it’s a question about websockets and not about asyncio;

• it isn’t answered by the documentation;

• it wasn’t asked already.

A good question can be written as a suggestion to improve the documentation.

5.2.4 Bitcoin users

websockets appears to be quite popular for interfacing with Bitcoin or other cryptocurrency trackers. I’m strongly
opposed to Bitcoin’s carbon footprint.

I’m aware of efforts to build proof-of-stake models. I’ll care once the total carbon footprint of all cryptocurrencies
drops to a non-bullshit level.

Please stop heating the planet where my children are supposed to live, thanks.

Since websockets is released under an open-source license, you can use it for any purpose you like. However, I won’t
spend any of my time to help.

I will summarily close issues related to Bitcoin or cryptocurrency in any way.

5.3 License

Copyright (c) 2013-2021 Aymeric Augustin and contributors.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

* Neither the name of websockets nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,

(continues on next page)

72 Chapter 5. Project

https://docs.python.org/3/library/asyncio.html#module-asyncio

websockets Documentation, Release 9.0

(continued from previous page)

OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

5.4 websockets for enterprise

5.4.1 Available as part of the Tidelift Subscription

Tidelift is working with the maintainers of websockets and thousands of other open source projects to deliver commer-
cial support and maintenance for the open source dependencies you use to build your applications. Save time, reduce
risk, and improve code health, while paying the maintainers of the exact dependencies you use.

5.4.2 Enterprise-ready open source software—managed for you

The Tidelift Subscription is a managed open source subscription for application dependencies covering millions of
open source projects across JavaScript, Python, Java, PHP, Ruby, .NET, and more.

Your subscription includes:

• Security updates

– Tidelift’s security response team coordinates patches for new breaking security vulnerabilities and alerts
immediately through a private channel, so your software supply chain is always secure.

• Licensing verification and indemnification

– Tidelift verifies license information to enable easy policy enforcement and adds intellectual property in-
demnification to cover creators and users in case something goes wrong. You always have a 100% up-to-
date bill of materials for your dependencies to share with your legal team, customers, or partners.

• Maintenance and code improvement

– Tidelift ensures the software you rely on keeps working as long as you need it to work. Your managed
dependencies are actively maintained and we recruit additional maintainers where required.

• Package selection and version guidance

– We help you choose the best open source packages from the start—and then guide you through updates to
stay on the best releases as new issues arise.

• Roadmap input

– Take a seat at the table with the creators behind the software you use. Tidelift’s participating maintainers
earn more income as their software is used by more subscribers, so they’re interested in knowing what you
need.

5.4. websockets for enterprise 73

websockets Documentation, Release 9.0

• Tooling and cloud integration

– Tidelift works with GitHub, GitLab, BitBucket, and more. We support every cloud platform (and other
deployment targets, too).

The end result? All of the capabilities you expect from commercial-grade software, for the full breadth of open source
you use. That means less time grappling with esoteric open source trivia, and more time building your own applica-
tions—and your business.

74 Chapter 5. Project

PYTHON MODULE INDEX

w
websockets.auth, 43
websockets.client, 29
websockets.datastructures, 46
websockets.exceptions, 47
websockets.extensions, 45
websockets.extensions.permessage_deflate, 44
websockets.server, 35
websockets.typing, 50

75

websockets Documentation, Release 9.0

76 Python Module Index

INDEX

A
AbortHandshake, 48

B
basic_auth_protocol_factory() (in module web-

sockets.auth), 43
BasicAuthWebSocketServerProtocol (class in web-

sockets.auth), 43

C
clear() (websockets.datastructures.Headers method),

47
ClientExtensionFactory (class in websock-

ets.extensions), 45
ClientPerMessageDeflateFactory (class in web-

sockets.extensions.permessage_deflate), 44
close() (websockets.client.WebSocketClientProtocol

method), 34
close() (websockets.server.WebSocketServer method),

37
close() (websockets.server.WebSocketServerProtocol

method), 42
close_code (websock-

ets.client.WebSocketClientProtocol attribute),
33

close_code (websock-
ets.server.WebSocketServerProtocol attribute),
39

close_reason (websock-
ets.client.WebSocketClientProtocol attribute),
33

close_reason (websock-
ets.server.WebSocketServerProtocol attribute),
39

closed (websockets.client.WebSocketClientProtocol at-
tribute), 32

closed (websockets.server.WebSocketServerProtocol at-
tribute), 39

connect() (in module websockets.client), 29
ConnectionClosed, 48
ConnectionClosedError, 48
ConnectionClosedOK, 48

D
decode() (websockets.extensions.Extension method), 45
DuplicateParameter, 48

E
encode() (websockets.extensions.Extension method), 45
Extension (class in websockets.extensions), 45

G
get_all() (websockets.datastructures.Headers

method), 47
get_request_params() (websock-

ets.extensions.ClientExtensionFactory method),
45

H
Headers (class in websockets.datastructures), 46

I
InvalidHandshake, 48
InvalidHeader, 48
InvalidHeaderFormat, 48
InvalidHeaderValue, 48
InvalidMessage, 48
InvalidOrigin, 48
InvalidParameterName, 49
InvalidParameterValue, 49
InvalidState, 49
InvalidStatusCode, 49
InvalidUpgrade, 49
InvalidURI, 49

L
local_address (websock-

ets.client.WebSocketClientProtocol attribute),
32

local_address (websock-
ets.server.WebSocketServerProtocol attribute),
38

M
module

77

websockets Documentation, Release 9.0

websockets.auth, 43
websockets.client, 29
websockets.datastructures, 46
websockets.exceptions, 47
websockets.extensions, 45
websockets.extensions.permessage_deflate,

44
websockets.server, 35
websockets.typing, 50

MultipleValuesError, 47

N
name (websockets.extensions.ClientExtensionFactory

property), 45
name (websockets.extensions.Extension property), 45
name (websockets.extensions.ServerExtensionFactory

property), 46
NegotiationError, 49

O
open (websockets.client.WebSocketClientProtocol at-

tribute), 32
open (websockets.server.WebSocketServerProtocol

attribute), 39
Origin() (in module websockets.typing), 50

P
path (websockets.client.WebSocketClientProtocol at-

tribute), 32
path (websockets.server.WebSocketServerProtocol

attribute), 39
PayloadTooBig, 49
ping() (websockets.client.WebSocketClientProtocol

method), 34
ping() (websockets.server.WebSocketServerProtocol

method), 41
pong() (websockets.client.WebSocketClientProtocol

method), 34
pong() (websockets.server.WebSocketServerProtocol

method), 42
process_request() (websock-

ets.auth.BasicAuthWebSocketServerProtocol
method), 43

process_request() (websock-
ets.server.WebSocketServerProtocol method),
39

process_request_params() (websock-
ets.extensions.ServerExtensionFactory
method), 46

process_response_params() (websock-
ets.extensions.ClientExtensionFactory method),
45

ProtocolError, 49
Python Enhancement Proposals

PEP 484, 64

R
raw_items() (websockets.datastructures.Headers

method), 47
recv() (websockets.client.WebSocketClientProtocol

method), 33
recv() (websockets.server.WebSocketServerProtocol

method), 40
RedirectHandshake, 49
remote_address (websock-

ets.client.WebSocketClientProtocol attribute),
32

remote_address (websock-
ets.server.WebSocketServerProtocol attribute),
39

request_headers (websock-
ets.client.WebSocketClientProtocol attribute),
32

request_headers (websock-
ets.server.WebSocketServerProtocol attribute),
39

response_headers (websock-
ets.client.WebSocketClientProtocol attribute),
32

response_headers (websock-
ets.server.WebSocketServerProtocol attribute),
39

RFC
RFC 6455, 51
RFC 7235, 43
RFC 7692, 23, 44

S
SecurityError, 49
select_subprotocol() (websock-

ets.server.WebSocketServerProtocol method),
40

send() (websockets.client.WebSocketClientProtocol
method), 33

send() (websockets.server.WebSocketServerProtocol
method), 41

serve() (in module websockets.server), 35
ServerExtensionFactory (class in websock-

ets.extensions), 46
ServerPerMessageDeflateFactory (class in web-

sockets.extensions.permessage_deflate), 44
sockets (websockets.server.WebSocketServer attribute),

36
subprotocol (websock-

ets.client.WebSocketClientProtocol attribute),
33

subprotocol (websock-
ets.server.WebSocketServerProtocol attribute),

78 Index

websockets Documentation, Release 9.0

39
Subprotocol() (in module websockets.typing), 50

U
unix_connect() (in module websockets.client), 30
unix_serve() (in module websockets.server), 36
username (websockets.auth.BasicAuthWebSocketServerProtocol

attribute), 43

W
wait_closed() (websock-

ets.client.WebSocketClientProtocol method),
35

wait_closed() (websockets.server.WebSocketServer
method), 37

wait_closed() (websock-
ets.server.WebSocketServerProtocol method),
42

WebSocketClientProtocol (class in websock-
ets.client), 31

WebSocketException, 49
WebSocketProtocolError (in module websock-

ets.exceptions), 49
websockets.auth

module, 43
websockets.client

module, 29
websockets.datastructures

module, 46
websockets.exceptions

module, 47
websockets.extensions

module, 45
websockets.extensions.permessage_deflate

module, 44
websockets.server

module, 35
websockets.typing

module, 50
WebSocketServer (class in websockets.server), 36
WebSocketServerProtocol (class in websock-

ets.server), 37

Index 79

	Tutorials
	Getting started
	Requirements
	Installation
	Basic example
	Secure example
	Browser-based example
	Synchronization example
	Common patterns
	Consumer
	Producer
	Both
	Registration

	That’s all!
	One more thing…

	FAQ
	Server side
	Why does the server close the connection after processing one message?
	Why can only one client connect at a time?
	How can I pass additional arguments to the connection handler?
	How do I get access HTTP headers, for example cookies?
	How do I get the IP address of the client connecting to my server?
	How do I set which IP addresses my server listens to?
	How do I close a connection properly?
	How do I run a HTTP server and WebSocket server on the same port?

	Client side
	How do I close a connection properly?
	How do I reconnect automatically when the connection drops?
	How do I stop a client that is continuously processing messages?
	How do I disable TLS/SSL certificate verification?

	Both sides
	How do I do two things in parallel? How do I integrate with another coroutine?
	How do I create channels or topics?
	What does ConnectionClosedError: code = 1006 mean?
	How can I pass additional arguments to a custom protocol subclass?
	Why do I get the error: module 'websockets' has no attribute '...'?
	Are there onopen, onmessage, onerror, and onclose callbacks?
	Can I use websockets synchronously, without async / await?

	Miscellaneous
	How do I set a timeout on recv()?
	How do I keep idle connections open?
	How do I respond to pings?
	Is there a Python 2 version?

	How-to guides
	Cheat sheet
	Server
	Client
	Debugging

	Deployment
	Application server
	Graceful shutdown
	Memory usage
	Baseline
	Buffers

	Port sharing

	Extensions
	Per-Message Deflate
	Writing an extension

	Deploying to Heroku
	Create application
	Configure deployment
	Deploy
	Validate deployment

	Reference
	API
	Client
	Opening a connection
	Using a connection

	Server
	Starting a server
	Stopping a server
	Using a connection
	Basic authentication

	Extensions
	Per-Message Deflate
	Abstract classes

	Utilities
	Data structures
	Exceptions
	Types

	Discussions
	Design
	Lifecycle
	State
	Coroutines

	Opening handshake
	Data transfer
	Symmetry
	Data flow
	Receiving data
	Sending data
	Closing handshake

	Connection termination
	Connection failure
	Server shutdown
	Cancellation
	User code
	Library

	Backpressure
	Buffers
	Concurrency

	Limitations
	Security
	Encryption
	Memory use
	Other limits

	Project
	Changelog
	Backwards-compatibility policy
	9.1
	9.0.2
	9.0.1
	9.0
	8.1
	8.0.2
	8.0.1
	8.0
	7.0
	6.0
	5.0.1
	5.0
	4.0.1
	4.0
	3.4
	3.3
	3.2
	3.1
	3.0
	2.7
	2.6
	2.5
	2.4
	2.3
	2.2
	2.1
	2.0
	1.0

	Contributing
	Code of Conduct
	Contributions
	Questions
	Bitcoin users

	License
	websockets for enterprise
	Available as part of the Tidelift Subscription
	Enterprise-ready open source software—managed for you

	Python Module Index
	Index

